Abstract

We report the results of simulations in which an algorithm developed for estimation of aerosol optical properties from the angular distribution of radiance exiting the top of the atmosphere over the oceans [Appl. Opt. 33, 4042 (1994)] is combined with a technique for carrying out radiative transfer computations by synthesis of the radiance produced by individual components of the aerosol-size distribution [Appl. Opt. 33, 7088 (1994)], to estimate the aerosol-size distribution by retrieval of the total aerosol optical thickness and the mixing ratios for a set of candidate component aerosol-size distributions. The simulations suggest that in situations in which the true size–refractive-index distribution can actually be synthesized from a combination of the candidate components, excellent retrievals of the aerosol optical thickness and the component mixing ratios are possible. An exception is the presence of strongly absorbing aerosols. The angular distribution of radiance in a single spectral band does not appear to contain sufficient information to separate weakly from strongly absorbing aerosols. However, when two spectral bands are used in the algorithm, retrievals in the case of strongly absorbing aerosols are improved. When pseudodata were simulated with an aerosol-size distribution that differed in functional form from the candidate components, excellent retrievals were still obtained as long as the refractive indices of the actual aerosol model and the candidate components were similar. This underscores the importance of component candidates having realistic indices of refraction in the various size ranges for application of the method. The examples presented all focus on the multiangle imaging spectroradiometer; however, the results should be as valid for data obtained by the use of high-altitude airborne sensors.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Wang, H. R. Gordon, “Estimating aerosol optical properties over the oceans with the multiangle imaging spectroradiometer: some preliminary studies,” Appl. Opt. 33, 4042–4057 (1994).
    [CrossRef] [PubMed]
  2. D. J. Diner, C. J. Bruegge, J. V. Martonchik, G. W. Bothwell, E. D. Danielson, E. L. Floyd, V. G. Ford, L. E. Hovland, K. L. Jones, M. L. White, “A Multi-angle Imaging Spectro-Radiometer for Terrestrial Remote Sensing from the Earth Observing System,” Int. J. Imaging Syst. Technol. 3, 92–107 (1991).
    [CrossRef]
  3. NASA, Earth Observing System: Science and Mission Requirements Working Group Report, Tech. Memo. 86129 (NASA, Washington, D.C., 1984).
  4. M. Wang, H. R. Gordon, “Radiance reflected from the ocean–atmosphere system: synthesis from individual components of the aerosol size distribution,” Appl. Opt. 33, 7088–7095 (1994).
    [CrossRef] [PubMed]
  5. P. Y. Deschamps, M. Herman, D. Tanre, “Modeling of the atmospheric effects and its application to the remote sensing of ocean color,” Appl. Opt. 22, 3751–3758 (1983).
    [CrossRef] [PubMed]
  6. H. R. Gordon, J. W. Brown, R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner,” Appl. Opt. 27, 862–871 (1988).
    [CrossRef] [PubMed]
  7. D. Tanre, M. Herman, P. Y. Deschamps, A. de Leffe, “Atmospheric modeling for space measurements of ground reflectances, including bidirectional properties,” Appl. Opt. 18, 3587–3594 (1979).
    [CrossRef] [PubMed]
  8. H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison between ship determinations and Coastal Zone Color Scanner estimates,” Appl. Opt. 22, 20–36 (1983).
    [CrossRef] [PubMed]
  9. H. R. Gordon, M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994).
    [CrossRef] [PubMed]
  10. S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, C. R. McClain, SeaWiFS Technical Report Series: Volume 1, An Overview of SeaWiFS and Ocean Color, NASA Tech. Memo. 104566 (NASA, Greenbelt, Md., 1992).
  11. G. A. d’Almeida, P. Koepke, E. P. Shettle, Atmospheric Aerosols—Global Climatology and Radiative Characteristics (Deepak, Hampton, Va., 1991).
  12. E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Rep. AFGL-TR-79-0214 (U.S. Air Force Geophysics Laboratory, Hanscomb Air Force Base, Mass., 1979).
  13. C. Junge, “Atmospheric chemistry,” Adv. Geophys. 4, 1–108 (1958).
    [CrossRef]
  14. D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (Elsevier, New York, 1969).
  15. H. R. Gordon, M. Wang, “Influence of oceanic whitecaps on atmospheric correction of SeaWiFS,” Appl. Opt. 33, 7754–7763 (1994).
    [CrossRef] [PubMed]
  16. C. Cox, W. Munk, “Measurements of the roughness of the sea surface from photographs of the Sun’s glitter,” J. Opt. Soc. Am. 44, 838–850 (1954).
    [CrossRef]

1994 (4)

1991 (1)

D. J. Diner, C. J. Bruegge, J. V. Martonchik, G. W. Bothwell, E. D. Danielson, E. L. Floyd, V. G. Ford, L. E. Hovland, K. L. Jones, M. L. White, “A Multi-angle Imaging Spectro-Radiometer for Terrestrial Remote Sensing from the Earth Observing System,” Int. J. Imaging Syst. Technol. 3, 92–107 (1991).
[CrossRef]

1988 (1)

1983 (2)

1979 (1)

1958 (1)

C. Junge, “Atmospheric chemistry,” Adv. Geophys. 4, 1–108 (1958).
[CrossRef]

1954 (1)

Bothwell, G. W.

D. J. Diner, C. J. Bruegge, J. V. Martonchik, G. W. Bothwell, E. D. Danielson, E. L. Floyd, V. G. Ford, L. E. Hovland, K. L. Jones, M. L. White, “A Multi-angle Imaging Spectro-Radiometer for Terrestrial Remote Sensing from the Earth Observing System,” Int. J. Imaging Syst. Technol. 3, 92–107 (1991).
[CrossRef]

Broenkow, W. W.

Brown, J. W.

Brown, O. B.

Bruegge, C. J.

D. J. Diner, C. J. Bruegge, J. V. Martonchik, G. W. Bothwell, E. D. Danielson, E. L. Floyd, V. G. Ford, L. E. Hovland, K. L. Jones, M. L. White, “A Multi-angle Imaging Spectro-Radiometer for Terrestrial Remote Sensing from the Earth Observing System,” Int. J. Imaging Syst. Technol. 3, 92–107 (1991).
[CrossRef]

Clark, D. K.

Cox, C.

d’Almeida, G. A.

G. A. d’Almeida, P. Koepke, E. P. Shettle, Atmospheric Aerosols—Global Climatology and Radiative Characteristics (Deepak, Hampton, Va., 1991).

Danielson, E. D.

D. J. Diner, C. J. Bruegge, J. V. Martonchik, G. W. Bothwell, E. D. Danielson, E. L. Floyd, V. G. Ford, L. E. Hovland, K. L. Jones, M. L. White, “A Multi-angle Imaging Spectro-Radiometer for Terrestrial Remote Sensing from the Earth Observing System,” Int. J. Imaging Syst. Technol. 3, 92–107 (1991).
[CrossRef]

de Leffe, A.

Deirmendjian, D.

D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (Elsevier, New York, 1969).

Deschamps, P. Y.

Diner, D. J.

D. J. Diner, C. J. Bruegge, J. V. Martonchik, G. W. Bothwell, E. D. Danielson, E. L. Floyd, V. G. Ford, L. E. Hovland, K. L. Jones, M. L. White, “A Multi-angle Imaging Spectro-Radiometer for Terrestrial Remote Sensing from the Earth Observing System,” Int. J. Imaging Syst. Technol. 3, 92–107 (1991).
[CrossRef]

Esaias, W. E.

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, C. R. McClain, SeaWiFS Technical Report Series: Volume 1, An Overview of SeaWiFS and Ocean Color, NASA Tech. Memo. 104566 (NASA, Greenbelt, Md., 1992).

Evans, R. H.

Feldman, G. C.

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, C. R. McClain, SeaWiFS Technical Report Series: Volume 1, An Overview of SeaWiFS and Ocean Color, NASA Tech. Memo. 104566 (NASA, Greenbelt, Md., 1992).

Fenn, R. W.

E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Rep. AFGL-TR-79-0214 (U.S. Air Force Geophysics Laboratory, Hanscomb Air Force Base, Mass., 1979).

Floyd, E. L.

D. J. Diner, C. J. Bruegge, J. V. Martonchik, G. W. Bothwell, E. D. Danielson, E. L. Floyd, V. G. Ford, L. E. Hovland, K. L. Jones, M. L. White, “A Multi-angle Imaging Spectro-Radiometer for Terrestrial Remote Sensing from the Earth Observing System,” Int. J. Imaging Syst. Technol. 3, 92–107 (1991).
[CrossRef]

Ford, V. G.

D. J. Diner, C. J. Bruegge, J. V. Martonchik, G. W. Bothwell, E. D. Danielson, E. L. Floyd, V. G. Ford, L. E. Hovland, K. L. Jones, M. L. White, “A Multi-angle Imaging Spectro-Radiometer for Terrestrial Remote Sensing from the Earth Observing System,” Int. J. Imaging Syst. Technol. 3, 92–107 (1991).
[CrossRef]

Gordon, H. R.

Gregg, W. W.

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, C. R. McClain, SeaWiFS Technical Report Series: Volume 1, An Overview of SeaWiFS and Ocean Color, NASA Tech. Memo. 104566 (NASA, Greenbelt, Md., 1992).

Herman, M.

Hooker, S. B.

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, C. R. McClain, SeaWiFS Technical Report Series: Volume 1, An Overview of SeaWiFS and Ocean Color, NASA Tech. Memo. 104566 (NASA, Greenbelt, Md., 1992).

Hovland, L. E.

D. J. Diner, C. J. Bruegge, J. V. Martonchik, G. W. Bothwell, E. D. Danielson, E. L. Floyd, V. G. Ford, L. E. Hovland, K. L. Jones, M. L. White, “A Multi-angle Imaging Spectro-Radiometer for Terrestrial Remote Sensing from the Earth Observing System,” Int. J. Imaging Syst. Technol. 3, 92–107 (1991).
[CrossRef]

Jones, K. L.

D. J. Diner, C. J. Bruegge, J. V. Martonchik, G. W. Bothwell, E. D. Danielson, E. L. Floyd, V. G. Ford, L. E. Hovland, K. L. Jones, M. L. White, “A Multi-angle Imaging Spectro-Radiometer for Terrestrial Remote Sensing from the Earth Observing System,” Int. J. Imaging Syst. Technol. 3, 92–107 (1991).
[CrossRef]

Junge, C.

C. Junge, “Atmospheric chemistry,” Adv. Geophys. 4, 1–108 (1958).
[CrossRef]

Koepke, P.

G. A. d’Almeida, P. Koepke, E. P. Shettle, Atmospheric Aerosols—Global Climatology and Radiative Characteristics (Deepak, Hampton, Va., 1991).

Martonchik, J. V.

D. J. Diner, C. J. Bruegge, J. V. Martonchik, G. W. Bothwell, E. D. Danielson, E. L. Floyd, V. G. Ford, L. E. Hovland, K. L. Jones, M. L. White, “A Multi-angle Imaging Spectro-Radiometer for Terrestrial Remote Sensing from the Earth Observing System,” Int. J. Imaging Syst. Technol. 3, 92–107 (1991).
[CrossRef]

McClain, C. R.

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, C. R. McClain, SeaWiFS Technical Report Series: Volume 1, An Overview of SeaWiFS and Ocean Color, NASA Tech. Memo. 104566 (NASA, Greenbelt, Md., 1992).

Munk, W.

Shettle, E. P.

G. A. d’Almeida, P. Koepke, E. P. Shettle, Atmospheric Aerosols—Global Climatology and Radiative Characteristics (Deepak, Hampton, Va., 1991).

E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Rep. AFGL-TR-79-0214 (U.S. Air Force Geophysics Laboratory, Hanscomb Air Force Base, Mass., 1979).

Tanre, D.

Wang, M.

White, M. L.

D. J. Diner, C. J. Bruegge, J. V. Martonchik, G. W. Bothwell, E. D. Danielson, E. L. Floyd, V. G. Ford, L. E. Hovland, K. L. Jones, M. L. White, “A Multi-angle Imaging Spectro-Radiometer for Terrestrial Remote Sensing from the Earth Observing System,” Int. J. Imaging Syst. Technol. 3, 92–107 (1991).
[CrossRef]

Adv. Geophys. (1)

C. Junge, “Atmospheric chemistry,” Adv. Geophys. 4, 1–108 (1958).
[CrossRef]

Appl. Opt. (8)

M. Wang, H. R. Gordon, “Estimating aerosol optical properties over the oceans with the multiangle imaging spectroradiometer: some preliminary studies,” Appl. Opt. 33, 4042–4057 (1994).
[CrossRef] [PubMed]

H. R. Gordon, M. Wang, “Influence of oceanic whitecaps on atmospheric correction of SeaWiFS,” Appl. Opt. 33, 7754–7763 (1994).
[CrossRef] [PubMed]

M. Wang, H. R. Gordon, “Radiance reflected from the ocean–atmosphere system: synthesis from individual components of the aerosol size distribution,” Appl. Opt. 33, 7088–7095 (1994).
[CrossRef] [PubMed]

P. Y. Deschamps, M. Herman, D. Tanre, “Modeling of the atmospheric effects and its application to the remote sensing of ocean color,” Appl. Opt. 22, 3751–3758 (1983).
[CrossRef] [PubMed]

H. R. Gordon, J. W. Brown, R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner,” Appl. Opt. 27, 862–871 (1988).
[CrossRef] [PubMed]

D. Tanre, M. Herman, P. Y. Deschamps, A. de Leffe, “Atmospheric modeling for space measurements of ground reflectances, including bidirectional properties,” Appl. Opt. 18, 3587–3594 (1979).
[CrossRef] [PubMed]

H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison between ship determinations and Coastal Zone Color Scanner estimates,” Appl. Opt. 22, 20–36 (1983).
[CrossRef] [PubMed]

H. R. Gordon, M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994).
[CrossRef] [PubMed]

Int. J. Imaging Syst. Technol. (1)

D. J. Diner, C. J. Bruegge, J. V. Martonchik, G. W. Bothwell, E. D. Danielson, E. L. Floyd, V. G. Ford, L. E. Hovland, K. L. Jones, M. L. White, “A Multi-angle Imaging Spectro-Radiometer for Terrestrial Remote Sensing from the Earth Observing System,” Int. J. Imaging Syst. Technol. 3, 92–107 (1991).
[CrossRef]

J. Opt. Soc. Am. (1)

Other (5)

NASA, Earth Observing System: Science and Mission Requirements Working Group Report, Tech. Memo. 86129 (NASA, Washington, D.C., 1984).

D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (Elsevier, New York, 1969).

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, C. R. McClain, SeaWiFS Technical Report Series: Volume 1, An Overview of SeaWiFS and Ocean Color, NASA Tech. Memo. 104566 (NASA, Greenbelt, Md., 1992).

G. A. d’Almeida, P. Koepke, E. P. Shettle, Atmospheric Aerosols—Global Climatology and Radiative Characteristics (Deepak, Hampton, Va., 1991).

E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Rep. AFGL-TR-79-0214 (U.S. Air Force Geophysics Laboratory, Hanscomb Air Force Base, Mass., 1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Relation between D i and RH for the Oceanic, Urban 1, and Tropospheric aerosol models.

Fig. 2
Fig. 2

Examples of the size distributions at RH = 98% for the Oceanic (solid curve), Tropospheric (dashed curve), and U1 (dotted curve) aerosol models. The individual distributions are normalized so that N i 0 = 1 cm−3.

Fig. 3
Fig. 3

True (solid curve) and retrieved (dashed curve) columnar size distributions: (a) P70 aerosol model, (b) P98 aerosol model.

Fig. 4
Fig. 4

Comparison between the true values of ρ A ( ξ ^ ) (curves) and the values produced by the average model selected in the retrievals (symbols) for the U80, T80, and C80 aerosol models: (a) summer geometry, (b) winter geometry, (c) same as (b) but with an expanded scale. Negative viewing angles correspond to viewing with azimuth angles nearer to the Sun than positive viewing angles.

Fig. 5
Fig. 5

Comparison between the true Haze C columnar size distributions (solid lines) and those derived as described in the text (dashed curves) for the summer geometry with τ a = 0.2: (a) ν = 2, m = 1.333; (b) ν = 3, m = 1.333; (c) ν = 4, m = 1.333; (d) ν = 2, m = 1.500; (e) ν = 3, m = 1.500; and (f) ν = 4, m = 1.500. The retrieved value of τ a and the values of L and σ are provided on the graphs.

Tables (16)

Tables Icon

Table 1 Modal Diameter D i , Standard Deviation s i , Complex Index of Refraction m i , and Single-Scattering Albedo ω i for the Three Component Aerosol Models

Tables Icon

Table 2 Retrieved Parameters for Maritime Test Models with RH = 70%

Tables Icon

Table 3 Retrieved Parameters for Tropospheric Test Models with RH = 70%

Tables Icon

Table 4 Retrieved Parameters for Pseudo Test Models with RH = 70%

Tables Icon

Table 5 Retrieved Parameters for Pseudo Test Models with RH = 98%

Tables Icon

Table 6 Retrieved Parameters for Maritime Test Models with RH = 70%

Tables Icon

Table 7 Retrieved Parameters for Tropospheric Test Models with RH = 70%

Tables Icon

Table 8 Retrieved Parameters for Pseudo Test Models with RH = 70%

Tables Icon

Table 9 Retrieved Parameters for Pseudo Test Models with RH = 98%

Tables Icon

Table 10 Retrieved Parameters for Test Models with RH = 80% in the Summer Geometry

Tables Icon

Table 11 Retrieved Parameters for Test Models with RH = 80% in the Winter Geometry

Tables Icon

Table 12 Retrieved τ a for the Haze C Aerosol for the Two MISR Cases with τ a = 0.2

Tables Icon

Table 13 Retrieved and True Particle Total Volume (in 10−5 cm3 cm−2) for the Haze C Aerosol for the Two MISR Cases with τ a = 0.2

Tables Icon

Table 14 Retrieved Parameters for Test Models with RH = 80% in the Summer Geometry

Tables Icon

Table 15 Retrieved Parameters for Test Models with RH = 80% in the Winter Geometry

Tables Icon

Table 16 Retrieved Parameters for Maritime Test Model with RH = 70% in the Summer Geometry, in the Presence of Calibration Errors

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

c = i M c i , ω a = i M c i c ω i , P a ( α ) = i M c i c ω i ω a P i ( α ) .
τ a = i M τ i ,
ρ t ( ξ ^ ) = ρ r ( ξ ^ ) + ρ a ( ξ ^ ) + ρ r a ( ξ ^ ) + t ρ w ( ξ ^ ) + t ρ w c ( ξ ^ ) + T ρ g ( ξ ^ ) ,
ρ t ( ξ ^ ) - ρ r ( ξ ^ ) - t ρ w ( ξ ^ ) = ρ a ( ξ ^ ) + ρ r a ( ξ ^ ) ρ A ( ξ ^ ) .
ρ t ( ξ ^ , τ a ) - ρ r ( ξ ^ ) - t ρ w ( ξ ^ ) = i = 1 M r i [ ρ t ( ξ ^ , τ a ) - ρ r ( ξ ^ ) - t ρ w ( ξ ^ ) ] i ,
ρ A ( ξ ^ , τ a ) = i = 1 M r i [ ρ A ( ξ ^ , τ a ) ] i ,
r i τ i τ a
( Δ ρ A ) j k = ( ρ A ) j k ( c ) - ( ρ A ) j ( m ) ( ρ A ) j ( m ) ,
σ k ( τ a ) = 100 [ j = 1 9 1 8 ( Δ ρ A ) j k 2 ] 1 / 2 ,
ρ A ( ξ ^ j , τ a , r 1 , , r M ) = i = 1 M r i [ ρ A ( ξ ^ j , τ a ) ] i ,
Δ ρ A ( ξ ^ j , τ a , r 1 , , r M ) = ρ A ( ξ ^ j , τ a , r 1 , , r M ) - ( ρ A ) j ( m ) ( ρ A ) j ( m )
σ ( τ a , r 1 , , r M ) = 100 [ j = 1 9 1 8 Δ ρ A ( ξ ^ j , τ a , r 1 , , r M ) 2 ] 1 / 2 .
τ a = 1 L l = 1 L τ a l , r 1 = 1 L l = 1 L r 1 l , r M = 1 L l = 1 L r M l .
d N d D = i = 1 M d N i d D ,
d N i d D = N i 0 log e ( 10 ) 2 π s i D exp { - 1 2 [ log 10 ( D / D i ) s i ] 2 } ,
τ i = c i * 0 N i 0 d z = c i * N i 0 ,
r i = c i * N i 0 i = 1 M c i * N i 0 = c i * n i i = 1 M c i * n i ,
τ a = 1 L l = 1 L τ a l , n 1 = 1 L l = 1 L r 1 l , n M = 1 L l = 1 L r M l .
d N d D = K , D 0 < D D 1 , = K ( D 1 D ) ν + 1 , D 1 < D D 2 , = 0 , D > D 2 ,
ρ t M ( ξ ^ j ) = ( 1 + α j ) ρ t ( ξ ^ j ) .

Metrics