Abstract

We report a detailed analysis of wind–temperature (W/T) lidar systems based on mesospheric potassium as the tracer. Currently, most narrow-band W/T systems use sodium (Na) as the tracer because of its relatively large natural abundance, large cross section, and the ability to use Doppler-free Na spectroscopy to generate accurate absolute frequency markers. We show that a potassium-based system with existing near-infrared solid-state laser technology operating at the potassium D lines has the potential to make W/T measurements that are more accurate than current Na narrow-band systems and can be far simpler technically.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. H. Frickle, U. von Zahn, “Mesopause temperatures derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar,” J. Atmos. Terr. Phys. 47, 499–512 (1985).
    [CrossRef]
  2. R. E. Bills, C. S. Gardner, C. Y. She, “Narrowband lidar technique for sodium temperature and Doppler wind observations of the upper atmosphere,” Opt. Eng. 30, 13–21 (1991).
    [CrossRef]
  3. R. E. Bills, C. S. Gardner, S. J. Franke, “Na Doppler/temperature lidar: initial mesopause region observations and comparison with the Urbana medium frequency radar,” J. Geophys. Res. 96, 22701–22707 (1991).
    [CrossRef]
  4. C. Y. She, J. R. Yu, H. Latifi, R. E. Bills, “High-spectral-resolution lidar for mesospheric sodium temperature measurements,” Appl. Opt. 31, 2095–2106 (1992).
    [CrossRef] [PubMed]
  5. C. S. Gardner, X. Tao, G. C. Papen, “Observations of strong wind shears and temperature enhancements during several sporadic Na layer events above Haleakala,” Geophys. Res. Lett. (in press).
  6. T. H. Jeys, A. A. Brailove, A. Mooradian, “Sum frequency generation of sodium resonance radiation,” Appl. Opt. 28, 2588–2591 (1989).
    [CrossRef] [PubMed]
  7. D. F. Heller, J. C. Walling, T. Wilkerson, S. Schmitz, U. von Zahn, “Diode laser injection seeded Raman shifted alexandrite laser tunable narrowband source,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 44–46.
  8. U. von Zahn, Institut für Atmospharenphysik, Universität Rostock, Kuhlungsborn, Germany D-18221 (personal communication, June1995).
  9. G. C. Papen, W. M. Pfenninger, D. M. Simonich, “Sensitivity analysis of sodium narrowband wind-temperature lidar systems,” Appl. Opt. 34, 480–498 (1995).
    [CrossRef] [PubMed]
  10. G. Megie, F. Bos, J. E. Blamont, M. L. Chanin, “Simultaneous nighttime lidar measurements of atmospheric sodium and potassium,” Planet. Space Sci. 26, 27–35 (1978).
    [CrossRef]
  11. E. Arimondo, M. Inguscio, P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49, 31–75 (1977).
    [CrossRef]
  12. P. von der Gathen, “Saturation effects in Na lidar temperature measurements,” J. Geophys. Res. 96, 3679–3690 (1991).
    [CrossRef]
  13. C. Y. She, J. R. Yu, “Doppler-free saturation fluorescence spectroscopy of Na atoms for atmospheric applications,” Appl. Opt. 34, 1063–1075 (1995).
    [CrossRef] [PubMed]
  14. B. M. Welsh, C. S. Gardner, “Nonlinear resonant absorption effects on the design of resonance fluorescence lidars and laser guide stars,” Appl. Opt. 28, 4141–4153 (1989).
    [CrossRef] [PubMed]
  15. F. Felix, W. Keenliside, G. Kent, M. C. W. Sandford, “Laser radar observations of atmospheric potassium” Nature 246, 345–346 (1973).
    [CrossRef]
  16. W. A. Gault, H. N. Rundle, “Twilight observations of upper atmospheric sodium, potassium and lithium,” Can. J. Phys. 47, 85–98 (1969).
    [CrossRef]
  17. V. J. Abreau, A. Bucholtz, P. B. Hays, D. A. Ortland, W. R. Skinner, J. H. Yee, “Absorption and emission line shapes in the O2 atmospheric bands: theoretical model and limb viewing simulations,” Appl. Opt. 28, 2128–2137 (1989).
    [CrossRef]
  18. J. H. Yee, Applied Physics Laboratory, Johns Hopkins University, Laurel, Md., 20723. (personal communication, 1995).

1995 (2)

1992 (1)

1991 (3)

R. E. Bills, C. S. Gardner, C. Y. She, “Narrowband lidar technique for sodium temperature and Doppler wind observations of the upper atmosphere,” Opt. Eng. 30, 13–21 (1991).
[CrossRef]

R. E. Bills, C. S. Gardner, S. J. Franke, “Na Doppler/temperature lidar: initial mesopause region observations and comparison with the Urbana medium frequency radar,” J. Geophys. Res. 96, 22701–22707 (1991).
[CrossRef]

P. von der Gathen, “Saturation effects in Na lidar temperature measurements,” J. Geophys. Res. 96, 3679–3690 (1991).
[CrossRef]

1989 (3)

1985 (1)

K. H. Frickle, U. von Zahn, “Mesopause temperatures derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar,” J. Atmos. Terr. Phys. 47, 499–512 (1985).
[CrossRef]

1978 (1)

G. Megie, F. Bos, J. E. Blamont, M. L. Chanin, “Simultaneous nighttime lidar measurements of atmospheric sodium and potassium,” Planet. Space Sci. 26, 27–35 (1978).
[CrossRef]

1977 (1)

E. Arimondo, M. Inguscio, P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49, 31–75 (1977).
[CrossRef]

1973 (1)

F. Felix, W. Keenliside, G. Kent, M. C. W. Sandford, “Laser radar observations of atmospheric potassium” Nature 246, 345–346 (1973).
[CrossRef]

1969 (1)

W. A. Gault, H. N. Rundle, “Twilight observations of upper atmospheric sodium, potassium and lithium,” Can. J. Phys. 47, 85–98 (1969).
[CrossRef]

Abreau, V. J.

Arimondo, E.

E. Arimondo, M. Inguscio, P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49, 31–75 (1977).
[CrossRef]

Bills, R. E.

C. Y. She, J. R. Yu, H. Latifi, R. E. Bills, “High-spectral-resolution lidar for mesospheric sodium temperature measurements,” Appl. Opt. 31, 2095–2106 (1992).
[CrossRef] [PubMed]

R. E. Bills, C. S. Gardner, C. Y. She, “Narrowband lidar technique for sodium temperature and Doppler wind observations of the upper atmosphere,” Opt. Eng. 30, 13–21 (1991).
[CrossRef]

R. E. Bills, C. S. Gardner, S. J. Franke, “Na Doppler/temperature lidar: initial mesopause region observations and comparison with the Urbana medium frequency radar,” J. Geophys. Res. 96, 22701–22707 (1991).
[CrossRef]

Blamont, J. E.

G. Megie, F. Bos, J. E. Blamont, M. L. Chanin, “Simultaneous nighttime lidar measurements of atmospheric sodium and potassium,” Planet. Space Sci. 26, 27–35 (1978).
[CrossRef]

Bos, F.

G. Megie, F. Bos, J. E. Blamont, M. L. Chanin, “Simultaneous nighttime lidar measurements of atmospheric sodium and potassium,” Planet. Space Sci. 26, 27–35 (1978).
[CrossRef]

Brailove, A. A.

Bucholtz, A.

Chanin, M. L.

G. Megie, F. Bos, J. E. Blamont, M. L. Chanin, “Simultaneous nighttime lidar measurements of atmospheric sodium and potassium,” Planet. Space Sci. 26, 27–35 (1978).
[CrossRef]

Felix, F.

F. Felix, W. Keenliside, G. Kent, M. C. W. Sandford, “Laser radar observations of atmospheric potassium” Nature 246, 345–346 (1973).
[CrossRef]

Franke, S. J.

R. E. Bills, C. S. Gardner, S. J. Franke, “Na Doppler/temperature lidar: initial mesopause region observations and comparison with the Urbana medium frequency radar,” J. Geophys. Res. 96, 22701–22707 (1991).
[CrossRef]

Frickle, K. H.

K. H. Frickle, U. von Zahn, “Mesopause temperatures derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar,” J. Atmos. Terr. Phys. 47, 499–512 (1985).
[CrossRef]

Gardner, C. S.

R. E. Bills, C. S. Gardner, C. Y. She, “Narrowband lidar technique for sodium temperature and Doppler wind observations of the upper atmosphere,” Opt. Eng. 30, 13–21 (1991).
[CrossRef]

R. E. Bills, C. S. Gardner, S. J. Franke, “Na Doppler/temperature lidar: initial mesopause region observations and comparison with the Urbana medium frequency radar,” J. Geophys. Res. 96, 22701–22707 (1991).
[CrossRef]

B. M. Welsh, C. S. Gardner, “Nonlinear resonant absorption effects on the design of resonance fluorescence lidars and laser guide stars,” Appl. Opt. 28, 4141–4153 (1989).
[CrossRef] [PubMed]

C. S. Gardner, X. Tao, G. C. Papen, “Observations of strong wind shears and temperature enhancements during several sporadic Na layer events above Haleakala,” Geophys. Res. Lett. (in press).

Gault, W. A.

W. A. Gault, H. N. Rundle, “Twilight observations of upper atmospheric sodium, potassium and lithium,” Can. J. Phys. 47, 85–98 (1969).
[CrossRef]

Hays, P. B.

Heller, D. F.

D. F. Heller, J. C. Walling, T. Wilkerson, S. Schmitz, U. von Zahn, “Diode laser injection seeded Raman shifted alexandrite laser tunable narrowband source,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 44–46.

Inguscio, M.

E. Arimondo, M. Inguscio, P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49, 31–75 (1977).
[CrossRef]

Jeys, T. H.

Keenliside, W.

F. Felix, W. Keenliside, G. Kent, M. C. W. Sandford, “Laser radar observations of atmospheric potassium” Nature 246, 345–346 (1973).
[CrossRef]

Kent, G.

F. Felix, W. Keenliside, G. Kent, M. C. W. Sandford, “Laser radar observations of atmospheric potassium” Nature 246, 345–346 (1973).
[CrossRef]

Latifi, H.

Megie, G.

G. Megie, F. Bos, J. E. Blamont, M. L. Chanin, “Simultaneous nighttime lidar measurements of atmospheric sodium and potassium,” Planet. Space Sci. 26, 27–35 (1978).
[CrossRef]

Mooradian, A.

Ortland, D. A.

Papen, G. C.

G. C. Papen, W. M. Pfenninger, D. M. Simonich, “Sensitivity analysis of sodium narrowband wind-temperature lidar systems,” Appl. Opt. 34, 480–498 (1995).
[CrossRef] [PubMed]

C. S. Gardner, X. Tao, G. C. Papen, “Observations of strong wind shears and temperature enhancements during several sporadic Na layer events above Haleakala,” Geophys. Res. Lett. (in press).

Pfenninger, W. M.

Rundle, H. N.

W. A. Gault, H. N. Rundle, “Twilight observations of upper atmospheric sodium, potassium and lithium,” Can. J. Phys. 47, 85–98 (1969).
[CrossRef]

Sandford, M. C. W.

F. Felix, W. Keenliside, G. Kent, M. C. W. Sandford, “Laser radar observations of atmospheric potassium” Nature 246, 345–346 (1973).
[CrossRef]

Schmitz, S.

D. F. Heller, J. C. Walling, T. Wilkerson, S. Schmitz, U. von Zahn, “Diode laser injection seeded Raman shifted alexandrite laser tunable narrowband source,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 44–46.

She, C. Y.

Simonich, D. M.

Skinner, W. R.

Tao, X.

C. S. Gardner, X. Tao, G. C. Papen, “Observations of strong wind shears and temperature enhancements during several sporadic Na layer events above Haleakala,” Geophys. Res. Lett. (in press).

Violino, P.

E. Arimondo, M. Inguscio, P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49, 31–75 (1977).
[CrossRef]

von der Gathen, P.

P. von der Gathen, “Saturation effects in Na lidar temperature measurements,” J. Geophys. Res. 96, 3679–3690 (1991).
[CrossRef]

von Zahn, U.

K. H. Frickle, U. von Zahn, “Mesopause temperatures derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar,” J. Atmos. Terr. Phys. 47, 499–512 (1985).
[CrossRef]

D. F. Heller, J. C. Walling, T. Wilkerson, S. Schmitz, U. von Zahn, “Diode laser injection seeded Raman shifted alexandrite laser tunable narrowband source,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 44–46.

U. von Zahn, Institut für Atmospharenphysik, Universität Rostock, Kuhlungsborn, Germany D-18221 (personal communication, June1995).

Walling, J. C.

D. F. Heller, J. C. Walling, T. Wilkerson, S. Schmitz, U. von Zahn, “Diode laser injection seeded Raman shifted alexandrite laser tunable narrowband source,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 44–46.

Welsh, B. M.

Wilkerson, T.

D. F. Heller, J. C. Walling, T. Wilkerson, S. Schmitz, U. von Zahn, “Diode laser injection seeded Raman shifted alexandrite laser tunable narrowband source,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 44–46.

Yee, J. H.

Yu, J. R.

Appl. Opt. (6)

Can. J. Phys. (1)

W. A. Gault, H. N. Rundle, “Twilight observations of upper atmospheric sodium, potassium and lithium,” Can. J. Phys. 47, 85–98 (1969).
[CrossRef]

J. Atmos. Terr. Phys. (1)

K. H. Frickle, U. von Zahn, “Mesopause temperatures derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar,” J. Atmos. Terr. Phys. 47, 499–512 (1985).
[CrossRef]

J. Geophys. Res. (2)

R. E. Bills, C. S. Gardner, S. J. Franke, “Na Doppler/temperature lidar: initial mesopause region observations and comparison with the Urbana medium frequency radar,” J. Geophys. Res. 96, 22701–22707 (1991).
[CrossRef]

P. von der Gathen, “Saturation effects in Na lidar temperature measurements,” J. Geophys. Res. 96, 3679–3690 (1991).
[CrossRef]

Nature (1)

F. Felix, W. Keenliside, G. Kent, M. C. W. Sandford, “Laser radar observations of atmospheric potassium” Nature 246, 345–346 (1973).
[CrossRef]

Opt. Eng. (1)

R. E. Bills, C. S. Gardner, C. Y. She, “Narrowband lidar technique for sodium temperature and Doppler wind observations of the upper atmosphere,” Opt. Eng. 30, 13–21 (1991).
[CrossRef]

Planet. Space Sci. (1)

G. Megie, F. Bos, J. E. Blamont, M. L. Chanin, “Simultaneous nighttime lidar measurements of atmospheric sodium and potassium,” Planet. Space Sci. 26, 27–35 (1978).
[CrossRef]

Rev. Mod. Phys. (1)

E. Arimondo, M. Inguscio, P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49, 31–75 (1977).
[CrossRef]

Other (4)

D. F. Heller, J. C. Walling, T. Wilkerson, S. Schmitz, U. von Zahn, “Diode laser injection seeded Raman shifted alexandrite laser tunable narrowband source,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 44–46.

U. von Zahn, Institut für Atmospharenphysik, Universität Rostock, Kuhlungsborn, Germany D-18221 (personal communication, June1995).

C. S. Gardner, X. Tao, G. C. Papen, “Observations of strong wind shears and temperature enhancements during several sporadic Na layer events above Haleakala,” Geophys. Res. Lett. (in press).

J. H. Yee, Applied Physics Laboratory, Johns Hopkins University, Laurel, Md., 20723. (personal communication, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Linear absorption backscatter cross section of the Na D2 line as a function of frequency for several temperatures. (b) Absorption backscatter cross section of the Na D2 line as a function of frequency for two radial wind velocities.

Fig. 2
Fig. 2

Effective backscatter cross section σeff for Na and potassium (K) at 200 K, along with the frequencies used for the narrow-band lidar technique for both elements.

Fig. 3
Fig. 3

(a) Modeled Doppler-free features of potassium (K) at T = 355 K for a power of 0.2 mW in each beam. (b) Expanded view showing the absolute frequency reference point at f c = 35 MHz.

Fig. 4
Fig. 4

Effective backscatter cross section σeff for potassium at 200 K, along with a fitted single Gaussian of rms width σ ^ D = 358 MHz, which is used for the approximate analytic expressions. Also shown are the six hyperfine lines that comprise the potassium D2 feature.

Fig. 5
Fig. 5

(a) Approximate and exact temperature sensitivity S T as a function of the wing frequency f 0. (b) Same as (a) except that wind sensitivity S W is plotted.

Fig. 6
Fig. 6

Plots of Q T and Q W are given in Eqs. (20) as a function of the wing frequency f 0, assuming a symmetric measurement about reference feature f c at 35 MHz. The temperature uncertainty is minimized for 816 MHz, and the wind uncertainty is minimized for 568 MHz.

Fig. 7
Fig. 7

(a) Total figure of merit F given in Eq. (21) for several values of C W as a function of frequency for the same conditions as Fig. 6. (b) Optimal frequency [minimum of curves in Fig. 7(a)] as a function of C W .

Fig. 8
Fig. 8

(a) Deviation from linear response (% saturation) at f c , f 0, and −f 0 as a function of the divergence [full angle to exp(−2) level of the intensity] for a pulse time of 100 ns FWHM and two values of total pulse energy (250 and 400 mJ). The calculated points are shown with symbols. Lines are drawn to aid the reader.

Fig. 9
Fig. 9

Absolute wind and temperature errors as a function of divergence for several potassium systems.

Tables (2)

Tables Icon

Table 1 Analytical Forms and the Approximate and Exact Values for Q T and Q W a used in Eqs. (20) to Calculate the Wind and Temperature Errors

Tables Icon

Table 2 Comparison of Potassium (K) and Na Narrow-Band Lidars

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

N ( z , t ) = C 0 z 2 σ eff ( f + ν R / λ , T , g , I ) ρ s ( z , t ) + N B ,
C 0 = η T a 2 P l Δ z Δ t ( h c / λ ) A R 4 π .
σ eff ( f + ν R / λ , T , g , I ) = - g ( f - f ) σ s ( f + ν R / λ , T , ν R , I ) d f ,
R ( z , t , Δ t ) = N f 1 ( z , t + Δ t ) N f 2 ( z , t ) = σ eff ( f 1 + ν R / λ , T , g , I ) ρ s ( z , t + Δ t ) σ eff ( f 2 + ν R / λ , T , g , I ) ρ s ( z , t ) ,
R = N f 1 ( z , t + Δ t ) N f 2 ( z , t ) σ eff ( f 1 + ν R / λ , T , g ) σ eff ( f 2 + ν R / λ , T , g ) .
σ s ( f + ν R / λ , T ) = 1 ( 2 π σ D 2 ) 1 / 2 i = 1 N A i × exp [ - ( f - f i + ν R / λ ) 2 2 σ D 2 ] ,
g ( f ) = 1 ( 2 π σ l 2 ) 1 / 2 exp ( - f 2 2 σ l 2 ) ,
σ eff ( f , T , ν R , σ l ) 1 ( 2 π σ e 2 ) 1 / 2 i A i × exp [ - ( f - f i + ν R / λ ) 2 2 σ e 2 ] ,
σ e 2 = σ l 2 + σ D 2 .
R T = [ N ( f + ) + N ( f - ) ] / N ( f c ) ,
R W = N ( f + ) / N ( f - ) .
σ ^ eff = C ^ exp [ - ( f + ν R / λ ) 2 2 σ ^ D 2 ] ,
R T = [ N ( f 0 ) + N ( - f 0 ) ] N ( f c ) = 2 exp [ - ( f 0 ) 2 / ( 2 σ ^ D 2 ) ] cosh [ ( f 0 ν R ) / ( λ σ ^ D 2 ) ] ,
R W = N ( f 0 ) N ( - f 0 ) = exp [ - ( 2 ν R f 0 ) / ( λ σ ^ D 2 ) ] .
S T = ( R T / T ) R T = 1 T [ f 0 2 2 σ ^ D 2 - ν R f 0 λ σ ^ D 2 tanh ( ν R f 0 λ σ ^ D 2 ) ] ,
S W = ( R W / ν R ) R W = - 2 f 0 λ σ ^ D 2 ,
σ ^ D ( T ) = α + β T = 266.2 + 0.46 T ,
Δ T 2 = ( T / R T ) 2 Δ R T 2 = 1 S T 2 ( Δ R T / R T ) 2 T 2 [ f 0 2 2 σ ^ D 2 - ν R f 0 λ σ ^ D 2 tanh ( ν R f 0 λ σ ^ D 2 ) ] - 2 ( Δ R T / R T ) 2 ,
Δ ν R 2 = ( ν R / R W ) 2 Δ R W 2 = 1 S W 2 ( Δ R W / R W ) 2 ( λ σ ^ D 2 2 f 0 ) 2 ( Δ R W / R W ) 2 .
( Δ R T R T ) 2 1 N ( f c ) ( 1 + 1 R T ) ,
( Δ R W R W ) 2 1 N ( f 0 ) ( 1 + 1 R W ) .
( Δ T ) 2 = 1 S T 2 ( 1 + 1 / R T ) N ( f c ) T 2 N ( f c ) 1 + ½ exp [ f 0 2 / ( 2 σ ^ D 2 ) ] [ f 0 2 / ( 2 σ ^ D 2 ) ] 2 ,
( Δ ν R ) 2 = 1 S W 2 ( 1 + 1 / R W ) N ( f 0 ) 2 N ( f c ) ( λ σ ^ D 2 2 f 0 ) 2 exp [ f 0 2 2 σ ^ D 2 ] ,
f T = 2.18 σ ^ D 580 + T ,
f W = 2 σ ^ D 376 + 0.65 T .
Δ T RMS = Q T N ( f c ) K ,
Δ ν RMS = Q W N ( f c ) ( m / s ) ,
F = [ ( C W Δ ν R ) 2 + ( Δ T ) 2 ] 1 / 2 ,
T / ν R = ( R T / ν R ) ( R T / T ) T [ ( ν f 0 2 ) coth ( ν R f 0 λ σ ^ D 2 ) - ν R ] - 1 2 T ν R λ 2 σ ^ D 2 ,
ν R / T = ( R W / T ) ( R W / ν R ) - ν R T .

Metrics