Abstract

We report studies on UV-photobleached optical channel waveguides in nonlinear optical polymer films. The nonlinear optical polymer used is poly(methyl methacrylate)/DR1 side-chain polymer. The effective indices of the channel waveguides are measured with the prism-coupling technique, along with the effective indices of bleached and unbleached polymer films. The effective-index method was used to predict the effective indices of the channel waveguides from measurements of the slab waveguides, without detailed knowledge of the index distributions in the polymer films. Some local stress-related effects on the boundaries of the channel waveguides caused by the UV-bleaching process are identified by comparison between direct channel measurement and prediction. It is found that the technique used in this study can be employed to predict the performance of channel waveguides processed such that they have no excessive internal stress distributions.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. B. Rochford, R. Zanoni, Q. Gong, G. I. Stegeman, “Fabrication of integrated optical structures in polydiacetylene films by irreversible photoinduced bleaching,” Appl. Phys. Lett. 55, 1161–1163 (1989).
    [CrossRef]
  2. M. B. H. Diemeer, F. M. M. Suyten, E. S. Trommel, A. McDonach, J. M. Copeland, L. M. Jenneskens, W. H. G. Horsthuis, “Photoinduced channel waveguide formation in nonlinear optical polymers,” Electron. Lett. 26, 379–380 (1990).
    [CrossRef]
  3. S. Immura, R. Yoshimura, T. Izama, “Polymer channel waveguides with low loss at 1.3 μm,” Electron. Lett. 27, 1342–1343 (1991).
    [CrossRef]
  4. T. Kurihara, S. Tomaru, Y. Mori, M. Hikita, “Third-order optical nonlinearities of a processable main chain polymer with symmetrically substituted tris-azo dyes,” Appl. Phys. Lett. 61, 1901–1903 (1992).
    [CrossRef]
  5. M. Stiller, “Excimer laser fabrication of waveguide devices,” in Excimer Laser Materials Processing and Beam Delivery Systems, B. P. Piwczyk, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1377, 73–78 (1991).
  6. R. M. Knox, P. P. Toulios, “Integrated circuits for the millimeter through optical frequency range,” in Proceedings of MRI Symposium on Submillimeter Waves, J. Fox, ed. (Polytechnic, Brooklyn, 1970), pp. 497–516.
  7. G. B. Hocker, W. K. Burns, “Mode dispersion in diffused channel waveguides by the effective index method,” Appl. Opt. 16, 113–118 (1977).
    [CrossRef] [PubMed]
  8. P.-L. Lin, B.-J. Li, “Semivectorial beam-propagation method for analysing polarized modes of rib waveguides,” IEEE J. Quantum Electron. 28, 778–782 (1992).
    [CrossRef]
  9. M. S. Stern, “Semivectorial polarised finite difference method for optical waveguides with arbitrary index profiles,” Proc. Inst. Electr. Eng. Part J 135, 56–63 (1988).
  10. N. Mabaya, P. E. Lagasse, P. Vandenbulcke, “Finite element analysis of optical waveguides,” IEEE Trans. Microwave Theor. Technol. MTT-29, 600–605 (1981).
    [CrossRef]
  11. R. S. Moshrefzadeh, D. K. Misemer, M. D. Radcliffe, C. V. Francis, S. K. Mohapatra, “Nonuniform photobleaching of dyed polymers for optical waveguides,” Appl. Phys. Lett. 62, 16–18 (1993).
    [CrossRef]
  12. J. M. White, P. F. Heidrich, “Optical waveguide refractive index profiles determined from measurement of mode indices: a simple analysis,” Appl. Opt. 15, 151–155 (1976).
    [CrossRef] [PubMed]
  13. J. Helms, J. Schmidtchen, B. Schuppert, K. Petermann, “Error analysis for refractive-index profile determination from nearfield measurements,” J. Lightwave Technol. 8, 625–633 (1990).
    [CrossRef]
  14. J. D. Swalen, R. Santo, M. Tacke, J. Fischer, “Properties of polymeric thin films by integrated optical techniques,” IBM J. Res. Dev. 21, 168–175 (1977).
    [CrossRef]
  15. P. K. Tien, R. Ulrich, R. J. Martin, “Modes of propagating light waves in thin deposited semiconductor films,” Appl. Phys. Lett. 14, 291–294 (1969).
    [CrossRef]
  16. W. Charczenko, “Coupled mode analysis, fabrication and characterization of microwave integrated optical devices,” Ph.D. dissertation (University of Colorado, Boulder, Colo., 1990).
  17. R. Ulrich, R. Torge, “Measurement of thin film parameters with a prism coupler,” Appl. Opt. 12, 2901–2908 (1973).
    [CrossRef] [PubMed]
  18. R. V. Ramaswamy, R. Srivastava, “Ion-exchanged glass waveguides: a review,” J. Lightwave Technol. 6, 984–1001 (1988).
    [CrossRef]

1993

R. S. Moshrefzadeh, D. K. Misemer, M. D. Radcliffe, C. V. Francis, S. K. Mohapatra, “Nonuniform photobleaching of dyed polymers for optical waveguides,” Appl. Phys. Lett. 62, 16–18 (1993).
[CrossRef]

1992

T. Kurihara, S. Tomaru, Y. Mori, M. Hikita, “Third-order optical nonlinearities of a processable main chain polymer with symmetrically substituted tris-azo dyes,” Appl. Phys. Lett. 61, 1901–1903 (1992).
[CrossRef]

P.-L. Lin, B.-J. Li, “Semivectorial beam-propagation method for analysing polarized modes of rib waveguides,” IEEE J. Quantum Electron. 28, 778–782 (1992).
[CrossRef]

1991

S. Immura, R. Yoshimura, T. Izama, “Polymer channel waveguides with low loss at 1.3 μm,” Electron. Lett. 27, 1342–1343 (1991).
[CrossRef]

1990

M. B. H. Diemeer, F. M. M. Suyten, E. S. Trommel, A. McDonach, J. M. Copeland, L. M. Jenneskens, W. H. G. Horsthuis, “Photoinduced channel waveguide formation in nonlinear optical polymers,” Electron. Lett. 26, 379–380 (1990).
[CrossRef]

J. Helms, J. Schmidtchen, B. Schuppert, K. Petermann, “Error analysis for refractive-index profile determination from nearfield measurements,” J. Lightwave Technol. 8, 625–633 (1990).
[CrossRef]

1989

K. B. Rochford, R. Zanoni, Q. Gong, G. I. Stegeman, “Fabrication of integrated optical structures in polydiacetylene films by irreversible photoinduced bleaching,” Appl. Phys. Lett. 55, 1161–1163 (1989).
[CrossRef]

1988

R. V. Ramaswamy, R. Srivastava, “Ion-exchanged glass waveguides: a review,” J. Lightwave Technol. 6, 984–1001 (1988).
[CrossRef]

M. S. Stern, “Semivectorial polarised finite difference method for optical waveguides with arbitrary index profiles,” Proc. Inst. Electr. Eng. Part J 135, 56–63 (1988).

1981

N. Mabaya, P. E. Lagasse, P. Vandenbulcke, “Finite element analysis of optical waveguides,” IEEE Trans. Microwave Theor. Technol. MTT-29, 600–605 (1981).
[CrossRef]

1977

J. D. Swalen, R. Santo, M. Tacke, J. Fischer, “Properties of polymeric thin films by integrated optical techniques,” IBM J. Res. Dev. 21, 168–175 (1977).
[CrossRef]

G. B. Hocker, W. K. Burns, “Mode dispersion in diffused channel waveguides by the effective index method,” Appl. Opt. 16, 113–118 (1977).
[CrossRef] [PubMed]

1976

1973

1969

P. K. Tien, R. Ulrich, R. J. Martin, “Modes of propagating light waves in thin deposited semiconductor films,” Appl. Phys. Lett. 14, 291–294 (1969).
[CrossRef]

Burns, W. K.

Charczenko, W.

W. Charczenko, “Coupled mode analysis, fabrication and characterization of microwave integrated optical devices,” Ph.D. dissertation (University of Colorado, Boulder, Colo., 1990).

Copeland, J. M.

M. B. H. Diemeer, F. M. M. Suyten, E. S. Trommel, A. McDonach, J. M. Copeland, L. M. Jenneskens, W. H. G. Horsthuis, “Photoinduced channel waveguide formation in nonlinear optical polymers,” Electron. Lett. 26, 379–380 (1990).
[CrossRef]

Diemeer, M. B. H.

M. B. H. Diemeer, F. M. M. Suyten, E. S. Trommel, A. McDonach, J. M. Copeland, L. M. Jenneskens, W. H. G. Horsthuis, “Photoinduced channel waveguide formation in nonlinear optical polymers,” Electron. Lett. 26, 379–380 (1990).
[CrossRef]

Fischer, J.

J. D. Swalen, R. Santo, M. Tacke, J. Fischer, “Properties of polymeric thin films by integrated optical techniques,” IBM J. Res. Dev. 21, 168–175 (1977).
[CrossRef]

Francis, C. V.

R. S. Moshrefzadeh, D. K. Misemer, M. D. Radcliffe, C. V. Francis, S. K. Mohapatra, “Nonuniform photobleaching of dyed polymers for optical waveguides,” Appl. Phys. Lett. 62, 16–18 (1993).
[CrossRef]

Gong, Q.

K. B. Rochford, R. Zanoni, Q. Gong, G. I. Stegeman, “Fabrication of integrated optical structures in polydiacetylene films by irreversible photoinduced bleaching,” Appl. Phys. Lett. 55, 1161–1163 (1989).
[CrossRef]

Heidrich, P. F.

Helms, J.

J. Helms, J. Schmidtchen, B. Schuppert, K. Petermann, “Error analysis for refractive-index profile determination from nearfield measurements,” J. Lightwave Technol. 8, 625–633 (1990).
[CrossRef]

Hikita, M.

T. Kurihara, S. Tomaru, Y. Mori, M. Hikita, “Third-order optical nonlinearities of a processable main chain polymer with symmetrically substituted tris-azo dyes,” Appl. Phys. Lett. 61, 1901–1903 (1992).
[CrossRef]

Hocker, G. B.

Horsthuis, W. H. G.

M. B. H. Diemeer, F. M. M. Suyten, E. S. Trommel, A. McDonach, J. M. Copeland, L. M. Jenneskens, W. H. G. Horsthuis, “Photoinduced channel waveguide formation in nonlinear optical polymers,” Electron. Lett. 26, 379–380 (1990).
[CrossRef]

Immura, S.

S. Immura, R. Yoshimura, T. Izama, “Polymer channel waveguides with low loss at 1.3 μm,” Electron. Lett. 27, 1342–1343 (1991).
[CrossRef]

Izama, T.

S. Immura, R. Yoshimura, T. Izama, “Polymer channel waveguides with low loss at 1.3 μm,” Electron. Lett. 27, 1342–1343 (1991).
[CrossRef]

Jenneskens, L. M.

M. B. H. Diemeer, F. M. M. Suyten, E. S. Trommel, A. McDonach, J. M. Copeland, L. M. Jenneskens, W. H. G. Horsthuis, “Photoinduced channel waveguide formation in nonlinear optical polymers,” Electron. Lett. 26, 379–380 (1990).
[CrossRef]

Knox, R. M.

R. M. Knox, P. P. Toulios, “Integrated circuits for the millimeter through optical frequency range,” in Proceedings of MRI Symposium on Submillimeter Waves, J. Fox, ed. (Polytechnic, Brooklyn, 1970), pp. 497–516.

Kurihara, T.

T. Kurihara, S. Tomaru, Y. Mori, M. Hikita, “Third-order optical nonlinearities of a processable main chain polymer with symmetrically substituted tris-azo dyes,” Appl. Phys. Lett. 61, 1901–1903 (1992).
[CrossRef]

Lagasse, P. E.

N. Mabaya, P. E. Lagasse, P. Vandenbulcke, “Finite element analysis of optical waveguides,” IEEE Trans. Microwave Theor. Technol. MTT-29, 600–605 (1981).
[CrossRef]

Li, B.-J.

P.-L. Lin, B.-J. Li, “Semivectorial beam-propagation method for analysing polarized modes of rib waveguides,” IEEE J. Quantum Electron. 28, 778–782 (1992).
[CrossRef]

Lin, P.-L.

P.-L. Lin, B.-J. Li, “Semivectorial beam-propagation method for analysing polarized modes of rib waveguides,” IEEE J. Quantum Electron. 28, 778–782 (1992).
[CrossRef]

Mabaya, N.

N. Mabaya, P. E. Lagasse, P. Vandenbulcke, “Finite element analysis of optical waveguides,” IEEE Trans. Microwave Theor. Technol. MTT-29, 600–605 (1981).
[CrossRef]

Martin, R. J.

P. K. Tien, R. Ulrich, R. J. Martin, “Modes of propagating light waves in thin deposited semiconductor films,” Appl. Phys. Lett. 14, 291–294 (1969).
[CrossRef]

McDonach, A.

M. B. H. Diemeer, F. M. M. Suyten, E. S. Trommel, A. McDonach, J. M. Copeland, L. M. Jenneskens, W. H. G. Horsthuis, “Photoinduced channel waveguide formation in nonlinear optical polymers,” Electron. Lett. 26, 379–380 (1990).
[CrossRef]

Misemer, D. K.

R. S. Moshrefzadeh, D. K. Misemer, M. D. Radcliffe, C. V. Francis, S. K. Mohapatra, “Nonuniform photobleaching of dyed polymers for optical waveguides,” Appl. Phys. Lett. 62, 16–18 (1993).
[CrossRef]

Mohapatra, S. K.

R. S. Moshrefzadeh, D. K. Misemer, M. D. Radcliffe, C. V. Francis, S. K. Mohapatra, “Nonuniform photobleaching of dyed polymers for optical waveguides,” Appl. Phys. Lett. 62, 16–18 (1993).
[CrossRef]

Mori, Y.

T. Kurihara, S. Tomaru, Y. Mori, M. Hikita, “Third-order optical nonlinearities of a processable main chain polymer with symmetrically substituted tris-azo dyes,” Appl. Phys. Lett. 61, 1901–1903 (1992).
[CrossRef]

Moshrefzadeh, R. S.

R. S. Moshrefzadeh, D. K. Misemer, M. D. Radcliffe, C. V. Francis, S. K. Mohapatra, “Nonuniform photobleaching of dyed polymers for optical waveguides,” Appl. Phys. Lett. 62, 16–18 (1993).
[CrossRef]

Petermann, K.

J. Helms, J. Schmidtchen, B. Schuppert, K. Petermann, “Error analysis for refractive-index profile determination from nearfield measurements,” J. Lightwave Technol. 8, 625–633 (1990).
[CrossRef]

Radcliffe, M. D.

R. S. Moshrefzadeh, D. K. Misemer, M. D. Radcliffe, C. V. Francis, S. K. Mohapatra, “Nonuniform photobleaching of dyed polymers for optical waveguides,” Appl. Phys. Lett. 62, 16–18 (1993).
[CrossRef]

Ramaswamy, R. V.

R. V. Ramaswamy, R. Srivastava, “Ion-exchanged glass waveguides: a review,” J. Lightwave Technol. 6, 984–1001 (1988).
[CrossRef]

Rochford, K. B.

K. B. Rochford, R. Zanoni, Q. Gong, G. I. Stegeman, “Fabrication of integrated optical structures in polydiacetylene films by irreversible photoinduced bleaching,” Appl. Phys. Lett. 55, 1161–1163 (1989).
[CrossRef]

Santo, R.

J. D. Swalen, R. Santo, M. Tacke, J. Fischer, “Properties of polymeric thin films by integrated optical techniques,” IBM J. Res. Dev. 21, 168–175 (1977).
[CrossRef]

Schmidtchen, J.

J. Helms, J. Schmidtchen, B. Schuppert, K. Petermann, “Error analysis for refractive-index profile determination from nearfield measurements,” J. Lightwave Technol. 8, 625–633 (1990).
[CrossRef]

Schuppert, B.

J. Helms, J. Schmidtchen, B. Schuppert, K. Petermann, “Error analysis for refractive-index profile determination from nearfield measurements,” J. Lightwave Technol. 8, 625–633 (1990).
[CrossRef]

Srivastava, R.

R. V. Ramaswamy, R. Srivastava, “Ion-exchanged glass waveguides: a review,” J. Lightwave Technol. 6, 984–1001 (1988).
[CrossRef]

Stegeman, G. I.

K. B. Rochford, R. Zanoni, Q. Gong, G. I. Stegeman, “Fabrication of integrated optical structures in polydiacetylene films by irreversible photoinduced bleaching,” Appl. Phys. Lett. 55, 1161–1163 (1989).
[CrossRef]

Stern, M. S.

M. S. Stern, “Semivectorial polarised finite difference method for optical waveguides with arbitrary index profiles,” Proc. Inst. Electr. Eng. Part J 135, 56–63 (1988).

Stiller, M.

M. Stiller, “Excimer laser fabrication of waveguide devices,” in Excimer Laser Materials Processing and Beam Delivery Systems, B. P. Piwczyk, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1377, 73–78 (1991).

Suyten, F. M. M.

M. B. H. Diemeer, F. M. M. Suyten, E. S. Trommel, A. McDonach, J. M. Copeland, L. M. Jenneskens, W. H. G. Horsthuis, “Photoinduced channel waveguide formation in nonlinear optical polymers,” Electron. Lett. 26, 379–380 (1990).
[CrossRef]

Swalen, J. D.

J. D. Swalen, R. Santo, M. Tacke, J. Fischer, “Properties of polymeric thin films by integrated optical techniques,” IBM J. Res. Dev. 21, 168–175 (1977).
[CrossRef]

Tacke, M.

J. D. Swalen, R. Santo, M. Tacke, J. Fischer, “Properties of polymeric thin films by integrated optical techniques,” IBM J. Res. Dev. 21, 168–175 (1977).
[CrossRef]

Tien, P. K.

P. K. Tien, R. Ulrich, R. J. Martin, “Modes of propagating light waves in thin deposited semiconductor films,” Appl. Phys. Lett. 14, 291–294 (1969).
[CrossRef]

Tomaru, S.

T. Kurihara, S. Tomaru, Y. Mori, M. Hikita, “Third-order optical nonlinearities of a processable main chain polymer with symmetrically substituted tris-azo dyes,” Appl. Phys. Lett. 61, 1901–1903 (1992).
[CrossRef]

Torge, R.

Toulios, P. P.

R. M. Knox, P. P. Toulios, “Integrated circuits for the millimeter through optical frequency range,” in Proceedings of MRI Symposium on Submillimeter Waves, J. Fox, ed. (Polytechnic, Brooklyn, 1970), pp. 497–516.

Trommel, E. S.

M. B. H. Diemeer, F. M. M. Suyten, E. S. Trommel, A. McDonach, J. M. Copeland, L. M. Jenneskens, W. H. G. Horsthuis, “Photoinduced channel waveguide formation in nonlinear optical polymers,” Electron. Lett. 26, 379–380 (1990).
[CrossRef]

Ulrich, R.

R. Ulrich, R. Torge, “Measurement of thin film parameters with a prism coupler,” Appl. Opt. 12, 2901–2908 (1973).
[CrossRef] [PubMed]

P. K. Tien, R. Ulrich, R. J. Martin, “Modes of propagating light waves in thin deposited semiconductor films,” Appl. Phys. Lett. 14, 291–294 (1969).
[CrossRef]

Vandenbulcke, P.

N. Mabaya, P. E. Lagasse, P. Vandenbulcke, “Finite element analysis of optical waveguides,” IEEE Trans. Microwave Theor. Technol. MTT-29, 600–605 (1981).
[CrossRef]

White, J. M.

Yoshimura, R.

S. Immura, R. Yoshimura, T. Izama, “Polymer channel waveguides with low loss at 1.3 μm,” Electron. Lett. 27, 1342–1343 (1991).
[CrossRef]

Zanoni, R.

K. B. Rochford, R. Zanoni, Q. Gong, G. I. Stegeman, “Fabrication of integrated optical structures in polydiacetylene films by irreversible photoinduced bleaching,” Appl. Phys. Lett. 55, 1161–1163 (1989).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

P. K. Tien, R. Ulrich, R. J. Martin, “Modes of propagating light waves in thin deposited semiconductor films,” Appl. Phys. Lett. 14, 291–294 (1969).
[CrossRef]

K. B. Rochford, R. Zanoni, Q. Gong, G. I. Stegeman, “Fabrication of integrated optical structures in polydiacetylene films by irreversible photoinduced bleaching,” Appl. Phys. Lett. 55, 1161–1163 (1989).
[CrossRef]

T. Kurihara, S. Tomaru, Y. Mori, M. Hikita, “Third-order optical nonlinearities of a processable main chain polymer with symmetrically substituted tris-azo dyes,” Appl. Phys. Lett. 61, 1901–1903 (1992).
[CrossRef]

R. S. Moshrefzadeh, D. K. Misemer, M. D. Radcliffe, C. V. Francis, S. K. Mohapatra, “Nonuniform photobleaching of dyed polymers for optical waveguides,” Appl. Phys. Lett. 62, 16–18 (1993).
[CrossRef]

Electron. Lett.

M. B. H. Diemeer, F. M. M. Suyten, E. S. Trommel, A. McDonach, J. M. Copeland, L. M. Jenneskens, W. H. G. Horsthuis, “Photoinduced channel waveguide formation in nonlinear optical polymers,” Electron. Lett. 26, 379–380 (1990).
[CrossRef]

S. Immura, R. Yoshimura, T. Izama, “Polymer channel waveguides with low loss at 1.3 μm,” Electron. Lett. 27, 1342–1343 (1991).
[CrossRef]

IBM J. Res. Dev.

J. D. Swalen, R. Santo, M. Tacke, J. Fischer, “Properties of polymeric thin films by integrated optical techniques,” IBM J. Res. Dev. 21, 168–175 (1977).
[CrossRef]

IEEE J. Quantum Electron.

P.-L. Lin, B.-J. Li, “Semivectorial beam-propagation method for analysing polarized modes of rib waveguides,” IEEE J. Quantum Electron. 28, 778–782 (1992).
[CrossRef]

IEEE Trans. Microwave Theor. Technol.

N. Mabaya, P. E. Lagasse, P. Vandenbulcke, “Finite element analysis of optical waveguides,” IEEE Trans. Microwave Theor. Technol. MTT-29, 600–605 (1981).
[CrossRef]

J. Lightwave Technol.

R. V. Ramaswamy, R. Srivastava, “Ion-exchanged glass waveguides: a review,” J. Lightwave Technol. 6, 984–1001 (1988).
[CrossRef]

J. Helms, J. Schmidtchen, B. Schuppert, K. Petermann, “Error analysis for refractive-index profile determination from nearfield measurements,” J. Lightwave Technol. 8, 625–633 (1990).
[CrossRef]

Proc. Inst. Electr. Eng. Part J

M. S. Stern, “Semivectorial polarised finite difference method for optical waveguides with arbitrary index profiles,” Proc. Inst. Electr. Eng. Part J 135, 56–63 (1988).

Other

M. Stiller, “Excimer laser fabrication of waveguide devices,” in Excimer Laser Materials Processing and Beam Delivery Systems, B. P. Piwczyk, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1377, 73–78 (1991).

R. M. Knox, P. P. Toulios, “Integrated circuits for the millimeter through optical frequency range,” in Proceedings of MRI Symposium on Submillimeter Waves, J. Fox, ed. (Polytechnic, Brooklyn, 1970), pp. 497–516.

W. Charczenko, “Coupled mode analysis, fabrication and characterization of microwave integrated optical devices,” Ph.D. dissertation (University of Colorado, Boulder, Colo., 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of the cross section of a UV-bleached channel waveguide. The dotted area is covered by a mask and is not bleached.

Fig. 2
Fig. 2

Effective-index changes versus bleaching time for a high-temperature bleached sample. The broadband UV light from a high-pressure mercury lamp has an intensity of 68 mW/cm2.

Fig. 3
Fig. 3

Flow chart of the effective-index method.

Fig. 4
Fig. 4

Diagram of a bleached sample. The shaded areas are unbleached (the small ones represent the optical channels; the large one is considered to be an unbleached slab region).

Fig. 5
Fig. 5

Three ways of realizing the M-line measurement of effective indices.

Fig. 6
Fig. 6

Detailed M-line-measurement setup. ND, neutral density.

Fig. 7
Fig. 7

Effective indices of the fundamental modes of slab and channel waveguides UV bleached at room temperature. - · - · - represents the effective indices of the unbleached slab region, which is used to represent the slab indices of all the unbleached channel regions; —●— is the effective-index-method calculations of the effective indices of these channels based on the slab measurements; □ □ □ represents the measured effective indices of the channel waveguides; - – -○- – - represents the effective indices of the bleached slab regions close to each of the channel waveguides. a, TE polarization; b, TM polarization.

Fig. 8
Fig. 8

Atomic force microscope surface profiles across a channel waveguide for samples that are a, bleached at room temperature, and b, bleached at a temperature close to the glass-transition temperature of the polymer.

Fig. 9
Fig. 9

Same as Fig. 7, but with the sample bleached at 120 °C. a, TE polarization; b, TM polarization.

Fig. 10
Fig. 10

Same as Fig. 7, but with the sample bleached at room temperature and baked at 115 °C for overnight. a, TE polarization; b, TM polarization.

Tables (1)

Tables Icon

Table 1 Agreement of the Measured Effective Indices of Channel Waveguides with the Calculations from Slab Waveguide Measurements

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n eff = n prism sin [ α + sin - 1 ( sin φ n prism ) ] ,

Metrics