Abstract

We demonstrate a compact, passive temperature-compensating package for fiber gratings. The grating is mounted under tension in a package comprising two materials with different thermal-expansion coefficients. As the temperature rises the strain is progressively released, compensating the temperature dependence of the Bragg wavelength. A fiber grating mounted in a package 50 mm long and 5 mm in diameter exhibited a total variation in Bragg wavelength of 0.07 nm over a 100 °C temperature range, compared with 0.92 nm for an uncompensated grating.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Meltz, W. W. Morey, W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14, 823–825 (1989).
    [CrossRef] [PubMed]
  2. V. Mizrahi, T. Erdogan, D. J. DiGiovanni, P. J. Lemaire, W. M. MacDonald, S. G. Kosinski, S. Cabot, J. E. Sipe, “Four channel fibre grating demultiplexer,” Electron. Lett. 30, 780–781 (1994).
    [CrossRef]
  3. F. Ouellette, “Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides,” Opt. Lett. 12, 847–849 (1987).
    [CrossRef] [PubMed]
  4. W. W. Morey, W. L. Glomb, “Incorporated Bragg filter temperature compensated optical waveguide device,” U.S. patent5,042,898 (27August1991).
  5. G. W. Yoffe, P. A. Krug, F. Ouellette, D. Thorncraft, “Temperature-compensated optical fiber Bragg gratings,” in Optical Fiber Communications, Vol. 8 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 134–135.
  6. G. Meltz, W. W. Morey, “Bragg grating formation and germanosilicate fiber photosensitivity,” in International Workshop on Photoinduced Self-Organization Effects in Optical Fiber, F. Ouellette, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1516, 185–199 (1991).
  7. J. Stone, L. W. Stulz, “Passively temperature-compensated nontunable fibre Fabry–Perot etalons,” Electron. Lett. 29, 1608–1609 (1993).
    [CrossRef]
  8. D. R. Lide, ed., Handbook of Chemistry and Physics, 73rd ed. (CRC, Boca Raton, Fla., 1992).
  9. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
    [CrossRef]

1994 (1)

V. Mizrahi, T. Erdogan, D. J. DiGiovanni, P. J. Lemaire, W. M. MacDonald, S. G. Kosinski, S. Cabot, J. E. Sipe, “Four channel fibre grating demultiplexer,” Electron. Lett. 30, 780–781 (1994).
[CrossRef]

1993 (2)

J. Stone, L. W. Stulz, “Passively temperature-compensated nontunable fibre Fabry–Perot etalons,” Electron. Lett. 29, 1608–1609 (1993).
[CrossRef]

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[CrossRef]

1989 (1)

1987 (1)

Albert, J.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[CrossRef]

Bilodeau, F.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[CrossRef]

Cabot, S.

V. Mizrahi, T. Erdogan, D. J. DiGiovanni, P. J. Lemaire, W. M. MacDonald, S. G. Kosinski, S. Cabot, J. E. Sipe, “Four channel fibre grating demultiplexer,” Electron. Lett. 30, 780–781 (1994).
[CrossRef]

DiGiovanni, D. J.

V. Mizrahi, T. Erdogan, D. J. DiGiovanni, P. J. Lemaire, W. M. MacDonald, S. G. Kosinski, S. Cabot, J. E. Sipe, “Four channel fibre grating demultiplexer,” Electron. Lett. 30, 780–781 (1994).
[CrossRef]

Erdogan, T.

V. Mizrahi, T. Erdogan, D. J. DiGiovanni, P. J. Lemaire, W. M. MacDonald, S. G. Kosinski, S. Cabot, J. E. Sipe, “Four channel fibre grating demultiplexer,” Electron. Lett. 30, 780–781 (1994).
[CrossRef]

Glenn, W. H.

Glomb, W. L.

W. W. Morey, W. L. Glomb, “Incorporated Bragg filter temperature compensated optical waveguide device,” U.S. patent5,042,898 (27August1991).

Hill, K. O.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[CrossRef]

Johnson, D. C.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[CrossRef]

Kosinski, S. G.

V. Mizrahi, T. Erdogan, D. J. DiGiovanni, P. J. Lemaire, W. M. MacDonald, S. G. Kosinski, S. Cabot, J. E. Sipe, “Four channel fibre grating demultiplexer,” Electron. Lett. 30, 780–781 (1994).
[CrossRef]

Krug, P. A.

G. W. Yoffe, P. A. Krug, F. Ouellette, D. Thorncraft, “Temperature-compensated optical fiber Bragg gratings,” in Optical Fiber Communications, Vol. 8 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 134–135.

Lemaire, P. J.

V. Mizrahi, T. Erdogan, D. J. DiGiovanni, P. J. Lemaire, W. M. MacDonald, S. G. Kosinski, S. Cabot, J. E. Sipe, “Four channel fibre grating demultiplexer,” Electron. Lett. 30, 780–781 (1994).
[CrossRef]

MacDonald, W. M.

V. Mizrahi, T. Erdogan, D. J. DiGiovanni, P. J. Lemaire, W. M. MacDonald, S. G. Kosinski, S. Cabot, J. E. Sipe, “Four channel fibre grating demultiplexer,” Electron. Lett. 30, 780–781 (1994).
[CrossRef]

Malo, B.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[CrossRef]

Meltz, G.

G. Meltz, W. W. Morey, W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14, 823–825 (1989).
[CrossRef] [PubMed]

G. Meltz, W. W. Morey, “Bragg grating formation and germanosilicate fiber photosensitivity,” in International Workshop on Photoinduced Self-Organization Effects in Optical Fiber, F. Ouellette, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1516, 185–199 (1991).

Mizrahi, V.

V. Mizrahi, T. Erdogan, D. J. DiGiovanni, P. J. Lemaire, W. M. MacDonald, S. G. Kosinski, S. Cabot, J. E. Sipe, “Four channel fibre grating demultiplexer,” Electron. Lett. 30, 780–781 (1994).
[CrossRef]

Morey, W. W.

G. Meltz, W. W. Morey, W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14, 823–825 (1989).
[CrossRef] [PubMed]

W. W. Morey, W. L. Glomb, “Incorporated Bragg filter temperature compensated optical waveguide device,” U.S. patent5,042,898 (27August1991).

G. Meltz, W. W. Morey, “Bragg grating formation and germanosilicate fiber photosensitivity,” in International Workshop on Photoinduced Self-Organization Effects in Optical Fiber, F. Ouellette, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1516, 185–199 (1991).

Ouellette, F.

F. Ouellette, “Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides,” Opt. Lett. 12, 847–849 (1987).
[CrossRef] [PubMed]

G. W. Yoffe, P. A. Krug, F. Ouellette, D. Thorncraft, “Temperature-compensated optical fiber Bragg gratings,” in Optical Fiber Communications, Vol. 8 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 134–135.

Sipe, J. E.

V. Mizrahi, T. Erdogan, D. J. DiGiovanni, P. J. Lemaire, W. M. MacDonald, S. G. Kosinski, S. Cabot, J. E. Sipe, “Four channel fibre grating demultiplexer,” Electron. Lett. 30, 780–781 (1994).
[CrossRef]

Stone, J.

J. Stone, L. W. Stulz, “Passively temperature-compensated nontunable fibre Fabry–Perot etalons,” Electron. Lett. 29, 1608–1609 (1993).
[CrossRef]

Stulz, L. W.

J. Stone, L. W. Stulz, “Passively temperature-compensated nontunable fibre Fabry–Perot etalons,” Electron. Lett. 29, 1608–1609 (1993).
[CrossRef]

Thorncraft, D.

G. W. Yoffe, P. A. Krug, F. Ouellette, D. Thorncraft, “Temperature-compensated optical fiber Bragg gratings,” in Optical Fiber Communications, Vol. 8 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 134–135.

Yoffe, G. W.

G. W. Yoffe, P. A. Krug, F. Ouellette, D. Thorncraft, “Temperature-compensated optical fiber Bragg gratings,” in Optical Fiber Communications, Vol. 8 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 134–135.

Appl. Phys. Lett. (1)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[CrossRef]

Electron. Lett. (2)

J. Stone, L. W. Stulz, “Passively temperature-compensated nontunable fibre Fabry–Perot etalons,” Electron. Lett. 29, 1608–1609 (1993).
[CrossRef]

V. Mizrahi, T. Erdogan, D. J. DiGiovanni, P. J. Lemaire, W. M. MacDonald, S. G. Kosinski, S. Cabot, J. E. Sipe, “Four channel fibre grating demultiplexer,” Electron. Lett. 30, 780–781 (1994).
[CrossRef]

Opt. Lett. (2)

Other (4)

D. R. Lide, ed., Handbook of Chemistry and Physics, 73rd ed. (CRC, Boca Raton, Fla., 1992).

W. W. Morey, W. L. Glomb, “Incorporated Bragg filter temperature compensated optical waveguide device,” U.S. patent5,042,898 (27August1991).

G. W. Yoffe, P. A. Krug, F. Ouellette, D. Thorncraft, “Temperature-compensated optical fiber Bragg gratings,” in Optical Fiber Communications, Vol. 8 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 134–135.

G. Meltz, W. W. Morey, “Bragg grating formation and germanosilicate fiber photosensitivity,” in International Workshop on Photoinduced Self-Organization Effects in Optical Fiber, F. Ouellette, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1516, 185–199 (1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Strain required for the Bragg wavelength of a grating to be held constant with varying temperature. An initial strain was applied at room temperature and adjusted manually at higher temperatures.

Fig. 2
Fig. 2

Schematic cross section of the compact, cylindrical temperature-compensating package.

Fig. 3
Fig. 3

Variation of Bragg wavelength with temperature for an uncompensated fiber grating (lower curve) and a fiber grating in the compact temperature-compensating package. The curves are only drawn to guide the eye.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ g = 2 Λ n ¯ ,

Metrics