Abstract

The Faraday effect provides a mechanism for achieving unidirectional light propagation in optical isolators; however, miniaturization requires large Verdet constants. High rare-earth content glasses produce suitably large Verdet values, but intrinsic fabrication problems remain. The novel powder-intube method, or a single-draw rod-in-tube method, obviates these difficulties. The powder-in-tube method was used to make silica-clad optical fibers with a high terbium oxide content aluminosilicate core. Core diameters of 2.4 μm were achieved in 125-μm-diameter fibers, with a numerical aperture of 0.35 and a Verdet constant of −20.0 rad/(T m) at 1.06 μm. This value is greater than 50% for crystals found in current isolator systems. This development could lead to all-fiber isolators of dramatically lower cost and ease of fabrication compared with their crystalline competitors.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Faraday, “On the magnetization of light, and the illumination of magnetic lines of force,” Philos. Trans. R. Soc. London 1, 104–123 (1846).
  2. E. Verdet, “Recherches sur les propriétés optiques développées dans les corps transparents par l’action du magnétisme,” Ann. Chim. Phys. 41, 370–412 (1854).
  3. J. E. Shelby, J. T. Kolhi, “Rare-earth aluminosilicate glasses,” J. Am. Ceram. Soc. 73, 39–42 (1990).
    [CrossRef]
  4. A. Makishima, M. Kobayashi, T. Shimohira, “Formation of aluminosilicate glasses containing rare-earth oxides,” J. Am. Ceram. Soc. 65, C-210 (1982).
    [CrossRef]
  5. M. J. Weber, “Faraday rotator materials,” Rep. M-103 (Lawrence Livermore National Laboratory, University of California, Livermore, Calif., 1982); M. J. Weber, “Faraday rotator materials for laser systems,” in Laser and Nonlinear Optical Materials, L. G. DeShazer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.681, 75–90 (1986); G. H. Dieke, H. M. Crosswhite, “The spectra of the doubly and triply ionized rare earths,” Appl. Opt. 2, 675–686 (1963).
    [CrossRef]
  6. N. F. Borelli, “Faraday rotation in glass,” J. Chem. Phys. 41, 3289–3293 (1964).
    [CrossRef]
  7. C. C. Robinson, “The Faraday rotation of diamagnetic glasses from 0.334 μm to 1.9 μm,” Appl. Opt. 3, 1163–1166 (1964).
    [CrossRef]
  8. M. Daybell, W. C. Overton, H. L. Laquer, “The Faraday effect at low temperatures in terbium alumina silicate glasses,” Appl. Phys. Lett. 11, 79–81 (1967).
    [CrossRef]
  9. C. C. Robinson, R. E. Graf, “Faraday rotation in praseodymium, terbium, and dysprosium alumino silicate glasses,” Appl. Opt. 3, 1190–1191 (1964).
    [CrossRef]
  10. S. B. Berger, C. B. Rubinstein, C. R. Kurkjian, A. W. Treptow, “Faraday rotation in rare-earth (III) phosphate glasses,” Phys. Res. 133, A723–A727 (1964).
    [CrossRef]
  11. A. Sommerfeld, Optics, Vol. IV of Lectures on Theoretical Physics Series (Academic, New York, 1964), p. 105.
  12. H. Becquerel, “Ser une interprétation applicable au phénomène de Faraday et au phénomène de Zeeman,” C. R. Acad. Sci. Ser. C 125, 679–685 (1897).
  13. J. H. Van Vleck, The Theory of Electric and Magnetic Susceptibilities (Oxford U. Press, New York, 1932), pp. 367–371; H. Cole, “Magneto-optic effects in glass. Part 1,” J. Soc. Glass Technol. 34, 220 (1950).
  14. P. A. Schulz, “Wavelength-independent Faraday isolator,” Appl. Opt. 28, 4458–4464 (1989).
    [CrossRef] [PubMed]
  15. E. Snitzer, R. Tumminelli, “SiO2-clad fibers with selectively volatized soft-glass cores,” Opt. Lett. 14, 757–759 (1989).
    [CrossRef] [PubMed]
  16. S. J. Collocott, K. N. R. Taylor, “Magneto-optical properties of erbium-doped soda glass,” J. Phys. 11, 2885–2893 (1978).
  17. Y. R. Shen, “Faraday rotation of rare-earth ions. I. Theory,” Phys. Rev. 133, A511–A515 (1964).
    [CrossRef]
  18. M. W. Urban, B. C. Cornilsen, “Bonding anomalies in the rare earth sesquioxides,” J. Phys. Chem. Solids 48, 475–479 (1987).
    [CrossRef]
  19. E. Snitzer, “Cylindrical dielectric waveguide modes,” J. Opt. Soc. Am. 5, 491–498 (1961); E. Snitzer, H. Osterberg, “Observed dielectric waveguide modes in the visible spectrum,” J. Opt. Soc. Am. 5, 499–505 (1961).
    [CrossRef]
  20. Isowave Incorporated, 64 Harding Road, Dover, N.J. 07801.
  21. G. T. Petrovskii, I. S. Edelman, T. V. Zarubina, A. V. Malakhovskii, V. N. Zabluda, M. Yu. Ivanov, “Faraday effect and spectral properties of high-concentrated rare earth oxide glasses in visible and near UV region,” J. Non-Cryst. Solids 130, 35–40 (1991).
    [CrossRef]
  22. N. J. Kreidl, Santa Fe, N.M. 87501 (personal communication, 1994).

1991 (1)

G. T. Petrovskii, I. S. Edelman, T. V. Zarubina, A. V. Malakhovskii, V. N. Zabluda, M. Yu. Ivanov, “Faraday effect and spectral properties of high-concentrated rare earth oxide glasses in visible and near UV region,” J. Non-Cryst. Solids 130, 35–40 (1991).
[CrossRef]

1990 (1)

J. E. Shelby, J. T. Kolhi, “Rare-earth aluminosilicate glasses,” J. Am. Ceram. Soc. 73, 39–42 (1990).
[CrossRef]

1989 (2)

1987 (1)

M. W. Urban, B. C. Cornilsen, “Bonding anomalies in the rare earth sesquioxides,” J. Phys. Chem. Solids 48, 475–479 (1987).
[CrossRef]

1982 (1)

A. Makishima, M. Kobayashi, T. Shimohira, “Formation of aluminosilicate glasses containing rare-earth oxides,” J. Am. Ceram. Soc. 65, C-210 (1982).
[CrossRef]

1978 (1)

S. J. Collocott, K. N. R. Taylor, “Magneto-optical properties of erbium-doped soda glass,” J. Phys. 11, 2885–2893 (1978).

1967 (1)

M. Daybell, W. C. Overton, H. L. Laquer, “The Faraday effect at low temperatures in terbium alumina silicate glasses,” Appl. Phys. Lett. 11, 79–81 (1967).
[CrossRef]

1964 (5)

C. C. Robinson, R. E. Graf, “Faraday rotation in praseodymium, terbium, and dysprosium alumino silicate glasses,” Appl. Opt. 3, 1190–1191 (1964).
[CrossRef]

S. B. Berger, C. B. Rubinstein, C. R. Kurkjian, A. W. Treptow, “Faraday rotation in rare-earth (III) phosphate glasses,” Phys. Res. 133, A723–A727 (1964).
[CrossRef]

N. F. Borelli, “Faraday rotation in glass,” J. Chem. Phys. 41, 3289–3293 (1964).
[CrossRef]

C. C. Robinson, “The Faraday rotation of diamagnetic glasses from 0.334 μm to 1.9 μm,” Appl. Opt. 3, 1163–1166 (1964).
[CrossRef]

Y. R. Shen, “Faraday rotation of rare-earth ions. I. Theory,” Phys. Rev. 133, A511–A515 (1964).
[CrossRef]

1961 (1)

E. Snitzer, “Cylindrical dielectric waveguide modes,” J. Opt. Soc. Am. 5, 491–498 (1961); E. Snitzer, H. Osterberg, “Observed dielectric waveguide modes in the visible spectrum,” J. Opt. Soc. Am. 5, 499–505 (1961).
[CrossRef]

1897 (1)

H. Becquerel, “Ser une interprétation applicable au phénomène de Faraday et au phénomène de Zeeman,” C. R. Acad. Sci. Ser. C 125, 679–685 (1897).

1854 (1)

E. Verdet, “Recherches sur les propriétés optiques développées dans les corps transparents par l’action du magnétisme,” Ann. Chim. Phys. 41, 370–412 (1854).

1846 (1)

M. Faraday, “On the magnetization of light, and the illumination of magnetic lines of force,” Philos. Trans. R. Soc. London 1, 104–123 (1846).

Becquerel, H.

H. Becquerel, “Ser une interprétation applicable au phénomène de Faraday et au phénomène de Zeeman,” C. R. Acad. Sci. Ser. C 125, 679–685 (1897).

Berger, S. B.

S. B. Berger, C. B. Rubinstein, C. R. Kurkjian, A. W. Treptow, “Faraday rotation in rare-earth (III) phosphate glasses,” Phys. Res. 133, A723–A727 (1964).
[CrossRef]

Borelli, N. F.

N. F. Borelli, “Faraday rotation in glass,” J. Chem. Phys. 41, 3289–3293 (1964).
[CrossRef]

Collocott, S. J.

S. J. Collocott, K. N. R. Taylor, “Magneto-optical properties of erbium-doped soda glass,” J. Phys. 11, 2885–2893 (1978).

Cornilsen, B. C.

M. W. Urban, B. C. Cornilsen, “Bonding anomalies in the rare earth sesquioxides,” J. Phys. Chem. Solids 48, 475–479 (1987).
[CrossRef]

Daybell, M.

M. Daybell, W. C. Overton, H. L. Laquer, “The Faraday effect at low temperatures in terbium alumina silicate glasses,” Appl. Phys. Lett. 11, 79–81 (1967).
[CrossRef]

Edelman, I. S.

G. T. Petrovskii, I. S. Edelman, T. V. Zarubina, A. V. Malakhovskii, V. N. Zabluda, M. Yu. Ivanov, “Faraday effect and spectral properties of high-concentrated rare earth oxide glasses in visible and near UV region,” J. Non-Cryst. Solids 130, 35–40 (1991).
[CrossRef]

Faraday, M.

M. Faraday, “On the magnetization of light, and the illumination of magnetic lines of force,” Philos. Trans. R. Soc. London 1, 104–123 (1846).

Graf, R. E.

Ivanov, M. Yu.

G. T. Petrovskii, I. S. Edelman, T. V. Zarubina, A. V. Malakhovskii, V. N. Zabluda, M. Yu. Ivanov, “Faraday effect and spectral properties of high-concentrated rare earth oxide glasses in visible and near UV region,” J. Non-Cryst. Solids 130, 35–40 (1991).
[CrossRef]

Kobayashi, M.

A. Makishima, M. Kobayashi, T. Shimohira, “Formation of aluminosilicate glasses containing rare-earth oxides,” J. Am. Ceram. Soc. 65, C-210 (1982).
[CrossRef]

Kolhi, J. T.

J. E. Shelby, J. T. Kolhi, “Rare-earth aluminosilicate glasses,” J. Am. Ceram. Soc. 73, 39–42 (1990).
[CrossRef]

Kreidl, N. J.

N. J. Kreidl, Santa Fe, N.M. 87501 (personal communication, 1994).

Kurkjian, C. R.

S. B. Berger, C. B. Rubinstein, C. R. Kurkjian, A. W. Treptow, “Faraday rotation in rare-earth (III) phosphate glasses,” Phys. Res. 133, A723–A727 (1964).
[CrossRef]

Laquer, H. L.

M. Daybell, W. C. Overton, H. L. Laquer, “The Faraday effect at low temperatures in terbium alumina silicate glasses,” Appl. Phys. Lett. 11, 79–81 (1967).
[CrossRef]

Makishima, A.

A. Makishima, M. Kobayashi, T. Shimohira, “Formation of aluminosilicate glasses containing rare-earth oxides,” J. Am. Ceram. Soc. 65, C-210 (1982).
[CrossRef]

Malakhovskii, A. V.

G. T. Petrovskii, I. S. Edelman, T. V. Zarubina, A. V. Malakhovskii, V. N. Zabluda, M. Yu. Ivanov, “Faraday effect and spectral properties of high-concentrated rare earth oxide glasses in visible and near UV region,” J. Non-Cryst. Solids 130, 35–40 (1991).
[CrossRef]

Overton, W. C.

M. Daybell, W. C. Overton, H. L. Laquer, “The Faraday effect at low temperatures in terbium alumina silicate glasses,” Appl. Phys. Lett. 11, 79–81 (1967).
[CrossRef]

Petrovskii, G. T.

G. T. Petrovskii, I. S. Edelman, T. V. Zarubina, A. V. Malakhovskii, V. N. Zabluda, M. Yu. Ivanov, “Faraday effect and spectral properties of high-concentrated rare earth oxide glasses in visible and near UV region,” J. Non-Cryst. Solids 130, 35–40 (1991).
[CrossRef]

Robinson, C. C.

Rubinstein, C. B.

S. B. Berger, C. B. Rubinstein, C. R. Kurkjian, A. W. Treptow, “Faraday rotation in rare-earth (III) phosphate glasses,” Phys. Res. 133, A723–A727 (1964).
[CrossRef]

Schulz, P. A.

Shelby, J. E.

J. E. Shelby, J. T. Kolhi, “Rare-earth aluminosilicate glasses,” J. Am. Ceram. Soc. 73, 39–42 (1990).
[CrossRef]

Shen, Y. R.

Y. R. Shen, “Faraday rotation of rare-earth ions. I. Theory,” Phys. Rev. 133, A511–A515 (1964).
[CrossRef]

Shimohira, T.

A. Makishima, M. Kobayashi, T. Shimohira, “Formation of aluminosilicate glasses containing rare-earth oxides,” J. Am. Ceram. Soc. 65, C-210 (1982).
[CrossRef]

Snitzer, E.

E. Snitzer, R. Tumminelli, “SiO2-clad fibers with selectively volatized soft-glass cores,” Opt. Lett. 14, 757–759 (1989).
[CrossRef] [PubMed]

E. Snitzer, “Cylindrical dielectric waveguide modes,” J. Opt. Soc. Am. 5, 491–498 (1961); E. Snitzer, H. Osterberg, “Observed dielectric waveguide modes in the visible spectrum,” J. Opt. Soc. Am. 5, 499–505 (1961).
[CrossRef]

Sommerfeld, A.

A. Sommerfeld, Optics, Vol. IV of Lectures on Theoretical Physics Series (Academic, New York, 1964), p. 105.

Taylor, K. N. R.

S. J. Collocott, K. N. R. Taylor, “Magneto-optical properties of erbium-doped soda glass,” J. Phys. 11, 2885–2893 (1978).

Treptow, A. W.

S. B. Berger, C. B. Rubinstein, C. R. Kurkjian, A. W. Treptow, “Faraday rotation in rare-earth (III) phosphate glasses,” Phys. Res. 133, A723–A727 (1964).
[CrossRef]

Tumminelli, R.

Urban, M. W.

M. W. Urban, B. C. Cornilsen, “Bonding anomalies in the rare earth sesquioxides,” J. Phys. Chem. Solids 48, 475–479 (1987).
[CrossRef]

Van Vleck, J. H.

J. H. Van Vleck, The Theory of Electric and Magnetic Susceptibilities (Oxford U. Press, New York, 1932), pp. 367–371; H. Cole, “Magneto-optic effects in glass. Part 1,” J. Soc. Glass Technol. 34, 220 (1950).

Verdet, E.

E. Verdet, “Recherches sur les propriétés optiques développées dans les corps transparents par l’action du magnétisme,” Ann. Chim. Phys. 41, 370–412 (1854).

Weber, M. J.

M. J. Weber, “Faraday rotator materials,” Rep. M-103 (Lawrence Livermore National Laboratory, University of California, Livermore, Calif., 1982); M. J. Weber, “Faraday rotator materials for laser systems,” in Laser and Nonlinear Optical Materials, L. G. DeShazer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.681, 75–90 (1986); G. H. Dieke, H. M. Crosswhite, “The spectra of the doubly and triply ionized rare earths,” Appl. Opt. 2, 675–686 (1963).
[CrossRef]

Zabluda, V. N.

G. T. Petrovskii, I. S. Edelman, T. V. Zarubina, A. V. Malakhovskii, V. N. Zabluda, M. Yu. Ivanov, “Faraday effect and spectral properties of high-concentrated rare earth oxide glasses in visible and near UV region,” J. Non-Cryst. Solids 130, 35–40 (1991).
[CrossRef]

Zarubina, T. V.

G. T. Petrovskii, I. S. Edelman, T. V. Zarubina, A. V. Malakhovskii, V. N. Zabluda, M. Yu. Ivanov, “Faraday effect and spectral properties of high-concentrated rare earth oxide glasses in visible and near UV region,” J. Non-Cryst. Solids 130, 35–40 (1991).
[CrossRef]

Ann. Chim. Phys. (1)

E. Verdet, “Recherches sur les propriétés optiques développées dans les corps transparents par l’action du magnétisme,” Ann. Chim. Phys. 41, 370–412 (1854).

Appl. Opt. (3)

Appl. Phys. Lett. (1)

M. Daybell, W. C. Overton, H. L. Laquer, “The Faraday effect at low temperatures in terbium alumina silicate glasses,” Appl. Phys. Lett. 11, 79–81 (1967).
[CrossRef]

C. R. Acad. Sci. Ser. C (1)

H. Becquerel, “Ser une interprétation applicable au phénomène de Faraday et au phénomène de Zeeman,” C. R. Acad. Sci. Ser. C 125, 679–685 (1897).

J. Am. Ceram. Soc. (2)

J. E. Shelby, J. T. Kolhi, “Rare-earth aluminosilicate glasses,” J. Am. Ceram. Soc. 73, 39–42 (1990).
[CrossRef]

A. Makishima, M. Kobayashi, T. Shimohira, “Formation of aluminosilicate glasses containing rare-earth oxides,” J. Am. Ceram. Soc. 65, C-210 (1982).
[CrossRef]

J. Chem. Phys. (1)

N. F. Borelli, “Faraday rotation in glass,” J. Chem. Phys. 41, 3289–3293 (1964).
[CrossRef]

J. Non-Cryst. Solids (1)

G. T. Petrovskii, I. S. Edelman, T. V. Zarubina, A. V. Malakhovskii, V. N. Zabluda, M. Yu. Ivanov, “Faraday effect and spectral properties of high-concentrated rare earth oxide glasses in visible and near UV region,” J. Non-Cryst. Solids 130, 35–40 (1991).
[CrossRef]

J. Opt. Soc. Am. (1)

E. Snitzer, “Cylindrical dielectric waveguide modes,” J. Opt. Soc. Am. 5, 491–498 (1961); E. Snitzer, H. Osterberg, “Observed dielectric waveguide modes in the visible spectrum,” J. Opt. Soc. Am. 5, 499–505 (1961).
[CrossRef]

J. Phys. (1)

S. J. Collocott, K. N. R. Taylor, “Magneto-optical properties of erbium-doped soda glass,” J. Phys. 11, 2885–2893 (1978).

J. Phys. Chem. Solids (1)

M. W. Urban, B. C. Cornilsen, “Bonding anomalies in the rare earth sesquioxides,” J. Phys. Chem. Solids 48, 475–479 (1987).
[CrossRef]

Opt. Lett. (1)

Philos. Trans. R. Soc. London (1)

M. Faraday, “On the magnetization of light, and the illumination of magnetic lines of force,” Philos. Trans. R. Soc. London 1, 104–123 (1846).

Phys. Res. (1)

S. B. Berger, C. B. Rubinstein, C. R. Kurkjian, A. W. Treptow, “Faraday rotation in rare-earth (III) phosphate glasses,” Phys. Res. 133, A723–A727 (1964).
[CrossRef]

Phys. Rev. (1)

Y. R. Shen, “Faraday rotation of rare-earth ions. I. Theory,” Phys. Rev. 133, A511–A515 (1964).
[CrossRef]

Other (5)

A. Sommerfeld, Optics, Vol. IV of Lectures on Theoretical Physics Series (Academic, New York, 1964), p. 105.

J. H. Van Vleck, The Theory of Electric and Magnetic Susceptibilities (Oxford U. Press, New York, 1932), pp. 367–371; H. Cole, “Magneto-optic effects in glass. Part 1,” J. Soc. Glass Technol. 34, 220 (1950).

M. J. Weber, “Faraday rotator materials,” Rep. M-103 (Lawrence Livermore National Laboratory, University of California, Livermore, Calif., 1982); M. J. Weber, “Faraday rotator materials for laser systems,” in Laser and Nonlinear Optical Materials, L. G. DeShazer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.681, 75–90 (1986); G. H. Dieke, H. M. Crosswhite, “The spectra of the doubly and triply ionized rare earths,” Appl. Opt. 2, 675–686 (1963).
[CrossRef]

Isowave Incorporated, 64 Harding Road, Dover, N.J. 07801.

N. J. Kreidl, Santa Fe, N.M. 87501 (personal communication, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of a bulk Faraday rotation isolator configuration with electromagnetic polarization states.

Fig. 2
Fig. 2

Electronic energy-level diagram for Ce3+, Gd3+, Tb3+, and Yb3+. Note transparency in the visible region.

Fig. 3
Fig. 3

Schematic of powder-in-tube method for the fabrication of high rare-earth content optical fibers.

Fig. 4
Fig. 4

Refractive-index profile of powder-in-tube fiber (125-μm diameter).

Fig. 5
Fig. 5

Refractive-index profile of powder-in-tube fiber core region. Note distribution indicative of diffusional processes (profile asymmetry from instrumental optical aberrations).

Fig. 6
Fig. 6

Optical micrograph of powder-to-glass transition in powder-in-tube core region.

Fig. 7
Fig. 7

Verdet constant [rad/(T m)] versus wavelength (nanometers) for a bulk terbium aluminosilicate sample and a commercially available TGG isolator crystal.

Tables (2)

Tables Icon

Table 1 Physical Properties of Terbium Aluminosilicate Glass

Tables Icon

Table 2 Verdet Constant versus Wavelength for Terbium Aluminosilicate Glass and Commercial TGG Isolator Crystal

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

× E = - B t , × H = D t + J , · D = ρ , · B = 0.
Θ = V B · d l ,
Θ = ω 2 c ( n - - n + ) ,
V = N e 3 2 n m 2 1 c 0 ω 2 ( ω 2 - ω 0 2 ) 2
V = e λ 2 m c 2 d n d λ ,
ν 2 [ i A i ( ω i 2 - ω 2 ) 2 + i j B i j ( ω i 2 - ω 2 ) ( ω j 2 - ω 2 ) ] = ν 2 ( D + P ) ,
V = A λ 2 - λ 0 2 ,

Metrics