Abstract

Hollow glass waveguides with a 250-μm i.d. have been fabricated with a liquid-phase deposition technique that uses silica tubing as a base material. The losses of the 250-μm-bore guide measured at CO2 laser wavelengths are as low as 2.0 dB/m. The straight losses for the hollow guides are in good agreement with theoretically predicted losses as a result of the nearly ideal structure of the guides. It is also shown that the guides have low bending losses, a nearly pure-mode delivery, and good high-power laser transmission. By proper design of the dielectric thickness, the guide is also able to deliver Er:YAG laser energy with a low loss of 1.2 dB/m for the 320-μm-bore waveguide. Because the hollow glass waveguide is very flexible and robust, it is quite suitable for medical applications.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Harrington, ed., Selected Papers on Infrared Fiber Optics, Vol. MS09 of SPIE Milestone Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1990), pp. 409–470, 527–537.
  2. I. Gannot, J. Dror, A. Inberg, N. Croitoru, “Optical characterization of flexible plastic hollow waveguide for CO2 laser delivery,” in Biomedical Optoelectronic Devices and Systems, N. I. Croitoru, R. Pratesi, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2084, 66–73 (1994).
  3. Y. Kato, M. Osawa, M. Miyagi, S. Aizawa, S. Abe, S. Onodera, “New fabrication technique of fluorocarbon polymer-coated hollow waveguides by liquid-phase coating for medical applications,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2131, 66–73 (1993).
  4. Y. Matsuura, M. Miyagi, “Er:YAG, CO, and CO2 laser delivery by ZnS-coated Ag waveguides,” Appl. Opt. 32, 6598–6601 (1993).
    [CrossRef] [PubMed]
  5. J. A. Harrington, C. C. Gregory, “Hollow sapphire fibers for the delivery of CO2 laser energy,” Opt. Lett. 15, 541–543 (1990).
    [CrossRef] [PubMed]
  6. T. Abel, J. Hirsch, J. A. Harrington, “Hollow glass waveguides for broadband infrared transmission,” Opt. Lett. 19, 1034–1036 (1994).
    [CrossRef] [PubMed]
  7. M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
    [CrossRef]
  8. B. Schweig, Mirrors: A Guide to the Manufacture of Mirrors and Reflecting Surfaces (Pelham, London, 1973).
  9. N. Croitoru, J. Dror, I. Gannot, “Characterization of hollow fibers for the transmission of infrared radiation,” Appl. Opt. 29, 1805–1809 (1990).
    [CrossRef] [PubMed]
  10. R. Dahan, J. Dror, N. Croitoru, “Characterization of chemically formed silver iodide layers for hollow infrared guides,” Mater. Res. Bull. 27, 761–766 (1992).
    [CrossRef]
  11. N. Croitoru, J. Dror, E. Goldenberg, D. Mendelovic, I. Gannot, “Hollow fiber waveguide and method of making same,” U.S. patent4,930,863 (5June1990).
  12. Y. Matsuura, M. Saito, M. Miyagi, A. Hongo, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
    [CrossRef]
  13. D. R. Hall, E. K. Gorton, R. M. Jenkins, “10-μm propagation losses in hollow dielectric waveguides,” J. Appl. Phys. 48, 1212–1216 (1977).
    [CrossRef]
  14. C. C. Gregory, J. A. Harrington, “Attenuation, modal, polarization properties of n < 1, hollow dielectric waveguides,” Appl. Opt. 32, 5302–5309 (1993).
    [CrossRef] [PubMed]
  15. R. Dahan, J. Dror, A. Inberg, N. Croitoru, “Scattering investigation of transmitted IR radiation through plastic waveguides for medical application,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2131, 35–41 (1994).
  16. E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
  17. M. Miyagi, “Bending losses in hollow and dielectric tube leaky waveguides,” Appl. Opt. 20, 1221–1229 (1981).
    [CrossRef] [PubMed]
  18. M. Miyagi, S. Karasawa, “Waveguide losses in sharply bent circular hollow waveguides,” Appl. Opt. 29, 367–370 (1990).
    [CrossRef] [PubMed]
  19. S. Abe, M. Miyagi, “Transmission and attenuation of the dominant mode in uniformly bent circular hollow waveguides for the infrared: scalar analysis,” IEEE Trans. Microwave Theory Tech. 39, 230–238 (1991).
    [CrossRef]
  20. Y. Matsuura, T. Abel, J. Hirsch, J. A. Harrington, “Small-bore hollow waveguide for delivery of near single-mode IR laser radiation,” Electron. Lett. 30, 1688–1690 (1994).
    [CrossRef]

1994 (2)

Y. Matsuura, T. Abel, J. Hirsch, J. A. Harrington, “Small-bore hollow waveguide for delivery of near single-mode IR laser radiation,” Electron. Lett. 30, 1688–1690 (1994).
[CrossRef]

T. Abel, J. Hirsch, J. A. Harrington, “Hollow glass waveguides for broadband infrared transmission,” Opt. Lett. 19, 1034–1036 (1994).
[CrossRef] [PubMed]

1993 (2)

1992 (1)

R. Dahan, J. Dror, N. Croitoru, “Characterization of chemically formed silver iodide layers for hollow infrared guides,” Mater. Res. Bull. 27, 761–766 (1992).
[CrossRef]

1991 (1)

S. Abe, M. Miyagi, “Transmission and attenuation of the dominant mode in uniformly bent circular hollow waveguides for the infrared: scalar analysis,” IEEE Trans. Microwave Theory Tech. 39, 230–238 (1991).
[CrossRef]

1990 (3)

1989 (1)

1984 (1)

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

1981 (1)

1977 (1)

D. R. Hall, E. K. Gorton, R. M. Jenkins, “10-μm propagation losses in hollow dielectric waveguides,” J. Appl. Phys. 48, 1212–1216 (1977).
[CrossRef]

1964 (1)

E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Abe, S.

S. Abe, M. Miyagi, “Transmission and attenuation of the dominant mode in uniformly bent circular hollow waveguides for the infrared: scalar analysis,” IEEE Trans. Microwave Theory Tech. 39, 230–238 (1991).
[CrossRef]

Y. Kato, M. Osawa, M. Miyagi, S. Aizawa, S. Abe, S. Onodera, “New fabrication technique of fluorocarbon polymer-coated hollow waveguides by liquid-phase coating for medical applications,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2131, 66–73 (1993).

Abel, T.

Y. Matsuura, T. Abel, J. Hirsch, J. A. Harrington, “Small-bore hollow waveguide for delivery of near single-mode IR laser radiation,” Electron. Lett. 30, 1688–1690 (1994).
[CrossRef]

T. Abel, J. Hirsch, J. A. Harrington, “Hollow glass waveguides for broadband infrared transmission,” Opt. Lett. 19, 1034–1036 (1994).
[CrossRef] [PubMed]

Aizawa, S.

Y. Kato, M. Osawa, M. Miyagi, S. Aizawa, S. Abe, S. Onodera, “New fabrication technique of fluorocarbon polymer-coated hollow waveguides by liquid-phase coating for medical applications,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2131, 66–73 (1993).

Croitoru, N.

R. Dahan, J. Dror, N. Croitoru, “Characterization of chemically formed silver iodide layers for hollow infrared guides,” Mater. Res. Bull. 27, 761–766 (1992).
[CrossRef]

N. Croitoru, J. Dror, I. Gannot, “Characterization of hollow fibers for the transmission of infrared radiation,” Appl. Opt. 29, 1805–1809 (1990).
[CrossRef] [PubMed]

R. Dahan, J. Dror, A. Inberg, N. Croitoru, “Scattering investigation of transmitted IR radiation through plastic waveguides for medical application,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2131, 35–41 (1994).

I. Gannot, J. Dror, A. Inberg, N. Croitoru, “Optical characterization of flexible plastic hollow waveguide for CO2 laser delivery,” in Biomedical Optoelectronic Devices and Systems, N. I. Croitoru, R. Pratesi, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2084, 66–73 (1994).

N. Croitoru, J. Dror, E. Goldenberg, D. Mendelovic, I. Gannot, “Hollow fiber waveguide and method of making same,” U.S. patent4,930,863 (5June1990).

Dahan, R.

R. Dahan, J. Dror, N. Croitoru, “Characterization of chemically formed silver iodide layers for hollow infrared guides,” Mater. Res. Bull. 27, 761–766 (1992).
[CrossRef]

R. Dahan, J. Dror, A. Inberg, N. Croitoru, “Scattering investigation of transmitted IR radiation through plastic waveguides for medical application,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2131, 35–41 (1994).

Dror, J.

R. Dahan, J. Dror, N. Croitoru, “Characterization of chemically formed silver iodide layers for hollow infrared guides,” Mater. Res. Bull. 27, 761–766 (1992).
[CrossRef]

N. Croitoru, J. Dror, I. Gannot, “Characterization of hollow fibers for the transmission of infrared radiation,” Appl. Opt. 29, 1805–1809 (1990).
[CrossRef] [PubMed]

R. Dahan, J. Dror, A. Inberg, N. Croitoru, “Scattering investigation of transmitted IR radiation through plastic waveguides for medical application,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2131, 35–41 (1994).

I. Gannot, J. Dror, A. Inberg, N. Croitoru, “Optical characterization of flexible plastic hollow waveguide for CO2 laser delivery,” in Biomedical Optoelectronic Devices and Systems, N. I. Croitoru, R. Pratesi, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2084, 66–73 (1994).

N. Croitoru, J. Dror, E. Goldenberg, D. Mendelovic, I. Gannot, “Hollow fiber waveguide and method of making same,” U.S. patent4,930,863 (5June1990).

Gannot, I.

N. Croitoru, J. Dror, I. Gannot, “Characterization of hollow fibers for the transmission of infrared radiation,” Appl. Opt. 29, 1805–1809 (1990).
[CrossRef] [PubMed]

I. Gannot, J. Dror, A. Inberg, N. Croitoru, “Optical characterization of flexible plastic hollow waveguide for CO2 laser delivery,” in Biomedical Optoelectronic Devices and Systems, N. I. Croitoru, R. Pratesi, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2084, 66–73 (1994).

N. Croitoru, J. Dror, E. Goldenberg, D. Mendelovic, I. Gannot, “Hollow fiber waveguide and method of making same,” U.S. patent4,930,863 (5June1990).

Goldenberg, E.

N. Croitoru, J. Dror, E. Goldenberg, D. Mendelovic, I. Gannot, “Hollow fiber waveguide and method of making same,” U.S. patent4,930,863 (5June1990).

Gorton, E. K.

D. R. Hall, E. K. Gorton, R. M. Jenkins, “10-μm propagation losses in hollow dielectric waveguides,” J. Appl. Phys. 48, 1212–1216 (1977).
[CrossRef]

Gregory, C. C.

Hall, D. R.

D. R. Hall, E. K. Gorton, R. M. Jenkins, “10-μm propagation losses in hollow dielectric waveguides,” J. Appl. Phys. 48, 1212–1216 (1977).
[CrossRef]

Harrington, J. A.

Hirsch, J.

Y. Matsuura, T. Abel, J. Hirsch, J. A. Harrington, “Small-bore hollow waveguide for delivery of near single-mode IR laser radiation,” Electron. Lett. 30, 1688–1690 (1994).
[CrossRef]

T. Abel, J. Hirsch, J. A. Harrington, “Hollow glass waveguides for broadband infrared transmission,” Opt. Lett. 19, 1034–1036 (1994).
[CrossRef] [PubMed]

Hongo, A.

Inberg, A.

R. Dahan, J. Dror, A. Inberg, N. Croitoru, “Scattering investigation of transmitted IR radiation through plastic waveguides for medical application,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2131, 35–41 (1994).

I. Gannot, J. Dror, A. Inberg, N. Croitoru, “Optical characterization of flexible plastic hollow waveguide for CO2 laser delivery,” in Biomedical Optoelectronic Devices and Systems, N. I. Croitoru, R. Pratesi, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2084, 66–73 (1994).

Jenkins, R. M.

D. R. Hall, E. K. Gorton, R. M. Jenkins, “10-μm propagation losses in hollow dielectric waveguides,” J. Appl. Phys. 48, 1212–1216 (1977).
[CrossRef]

Karasawa, S.

Kato, Y.

Y. Kato, M. Osawa, M. Miyagi, S. Aizawa, S. Abe, S. Onodera, “New fabrication technique of fluorocarbon polymer-coated hollow waveguides by liquid-phase coating for medical applications,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2131, 66–73 (1993).

Kawakami, S.

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

Marcatili, E. A. J.

E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Matsuura, Y.

Mendelovic, D.

N. Croitoru, J. Dror, E. Goldenberg, D. Mendelovic, I. Gannot, “Hollow fiber waveguide and method of making same,” U.S. patent4,930,863 (5June1990).

Miyagi, M.

Y. Matsuura, M. Miyagi, “Er:YAG, CO, and CO2 laser delivery by ZnS-coated Ag waveguides,” Appl. Opt. 32, 6598–6601 (1993).
[CrossRef] [PubMed]

S. Abe, M. Miyagi, “Transmission and attenuation of the dominant mode in uniformly bent circular hollow waveguides for the infrared: scalar analysis,” IEEE Trans. Microwave Theory Tech. 39, 230–238 (1991).
[CrossRef]

M. Miyagi, S. Karasawa, “Waveguide losses in sharply bent circular hollow waveguides,” Appl. Opt. 29, 367–370 (1990).
[CrossRef] [PubMed]

Y. Matsuura, M. Saito, M. Miyagi, A. Hongo, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
[CrossRef]

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

M. Miyagi, “Bending losses in hollow and dielectric tube leaky waveguides,” Appl. Opt. 20, 1221–1229 (1981).
[CrossRef] [PubMed]

Y. Kato, M. Osawa, M. Miyagi, S. Aizawa, S. Abe, S. Onodera, “New fabrication technique of fluorocarbon polymer-coated hollow waveguides by liquid-phase coating for medical applications,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2131, 66–73 (1993).

Onodera, S.

Y. Kato, M. Osawa, M. Miyagi, S. Aizawa, S. Abe, S. Onodera, “New fabrication technique of fluorocarbon polymer-coated hollow waveguides by liquid-phase coating for medical applications,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2131, 66–73 (1993).

Osawa, M.

Y. Kato, M. Osawa, M. Miyagi, S. Aizawa, S. Abe, S. Onodera, “New fabrication technique of fluorocarbon polymer-coated hollow waveguides by liquid-phase coating for medical applications,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2131, 66–73 (1993).

Saito, M.

Schmeltzer, R. A.

E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Schweig, B.

B. Schweig, Mirrors: A Guide to the Manufacture of Mirrors and Reflecting Surfaces (Pelham, London, 1973).

Appl. Opt. (5)

Bell Syst. Tech. J. (1)

E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Electron. Lett. (1)

Y. Matsuura, T. Abel, J. Hirsch, J. A. Harrington, “Small-bore hollow waveguide for delivery of near single-mode IR laser radiation,” Electron. Lett. 30, 1688–1690 (1994).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

S. Abe, M. Miyagi, “Transmission and attenuation of the dominant mode in uniformly bent circular hollow waveguides for the infrared: scalar analysis,” IEEE Trans. Microwave Theory Tech. 39, 230–238 (1991).
[CrossRef]

J. Appl. Phys. (1)

D. R. Hall, E. K. Gorton, R. M. Jenkins, “10-μm propagation losses in hollow dielectric waveguides,” J. Appl. Phys. 48, 1212–1216 (1977).
[CrossRef]

J. Lightwave Technol. (1)

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

J. Opt. Soc. Am. A (1)

Mater. Res. Bull. (1)

R. Dahan, J. Dror, N. Croitoru, “Characterization of chemically formed silver iodide layers for hollow infrared guides,” Mater. Res. Bull. 27, 761–766 (1992).
[CrossRef]

Opt. Lett. (2)

Other (6)

N. Croitoru, J. Dror, E. Goldenberg, D. Mendelovic, I. Gannot, “Hollow fiber waveguide and method of making same,” U.S. patent4,930,863 (5June1990).

R. Dahan, J. Dror, A. Inberg, N. Croitoru, “Scattering investigation of transmitted IR radiation through plastic waveguides for medical application,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2131, 35–41 (1994).

B. Schweig, Mirrors: A Guide to the Manufacture of Mirrors and Reflecting Surfaces (Pelham, London, 1973).

J. A. Harrington, ed., Selected Papers on Infrared Fiber Optics, Vol. MS09 of SPIE Milestone Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1990), pp. 409–470, 527–537.

I. Gannot, J. Dror, A. Inberg, N. Croitoru, “Optical characterization of flexible plastic hollow waveguide for CO2 laser delivery,” in Biomedical Optoelectronic Devices and Systems, N. I. Croitoru, R. Pratesi, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2084, 66–73 (1994).

Y. Kato, M. Osawa, M. Miyagi, S. Aizawa, S. Abe, S. Onodera, “New fabrication technique of fluorocarbon polymer-coated hollow waveguides by liquid-phase coating for medical applications,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2131, 66–73 (1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic view of the fabrication setup for the production of coatings inside glass tubing; sol, solution.

Fig. 2
Fig. 2

Spectral loss of the hollow glass waveguide designed for use at 10.6 μm. The waveguide is excited by a Gaussian beam with a FWHM of 8°.

Fig. 3
Fig. 3

Transmission losses of the straight, hollow glass waveguides at 10.6 μm. The squares are measured results, and the solid curve is the theoretical loss calculated from Eq. (1).

Fig. 4
Fig. 4

Measured bending losses for CO2 laser light whose polarization is perpendicular to the bending plane. The dashed line is the theoretical bending loss of a corresponding slab waveguide for a TE wave.

Fig. 5
Fig. 5

Bending losses for parallel polarized light. The dashed line is the theoretical loss of a corresponding slab guide for a TM wave.

Fig. 6
Fig. 6

Measured beam profile of the 250-μm-bore straight waveguide at a distance of 86 mm from the output end.

Fig. 7
Fig. 7

Measured beam profile of the 250-μm-bore bent waveguide. The bending radius is 25 mm.

Fig. 8
Fig. 8

Beam profile of the 530-μm-bore waveguide bent to a 69-mm radius.

Fig. 9
Fig. 9

CO2 laser power delivery in different bore sizes of a hollow glass waveguide with a length of 1 m.

Fig. 10
Fig. 10

Loss spectra of a hollow glass waveguide designed for Er:YAG laser light transmission.

Fig. 11
Fig. 11

Transmission losses of straight, hollow glass waveguides, using a 2.94-μm Er:YAG laser source. The solid curve is the theoretically calculated loss from Eq. (1). The dashed curve is a fit to the measured losses calculated by the use of a least-squares method.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

2 α = n 0 k 0 8 U 0 2 ( n 0 k 0 a ) 3 Re ( z TE + y TM ) ,
α TE = Re ( z TE ) R ,             α TM = Re ( y TM ) R ,
α = c 1 α TE + c 2 α TM c 1 + c 2 ,

Metrics