Abstract

Characteristics of ruby passive Q switching with a Dy2+:CaF2 solid-state saturable absorber are investigated with output couplers of various reflectivities and saturable absorbers of different thicknesses. Numerical simulation is used to investigate the behavior of ruby passive Q switching with a Dy2+:CaF2 saturable absorber and to interpret the experimental results.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Andrauskas, C. Kennedy, “Tetravalent chromium solid-state passive Q switch for Nd:YAG laser systems,” in Advanced Solid-State Lasers, G. Dubé, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 393–397.
  2. I. J. Miller, A. J. Alcock, J. E. Bernard, “Experimental investigation of Cr4+ in YAG as a passive Q-switch,” in Advanced Solid-State Lasers, G. Dubé, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 322–325.
  3. M. I. Demchuk, V. P. Mikhailov, N. I. Zhavoronkov, N. V. Kuleshov, P. V. Prokoshin, K. V. Yumashev, M. G. Livshits, B. I. Minkov, “Chromium-doped fosterite as a solid-state saturable absorber,” Opt. Lett. 17, 929–930 (1992).
    [CrossRef] [PubMed]
  4. V. P. Mikhailov, N. V. Kuleshov, N. I. Zhavoronkov, P. V. Prokohsin, K. V. Yumashev, V. A. Sandulenko, “Optical absorption and nonlinear transmission of tetrahedral V3+ (d2) in yttrium aluminum garnet,” Opt. Mater. 2, 267–272 (1993).
    [CrossRef]
  5. K. Spariosu, R. D. Stultz, M. Birnbaum, “Er:Ca5(PO4)3F saturable-absorber Q switch for the Er:glass laser at 1.53 μm,” Appl. Phys. Lett. 62, 2763–2765 (1993).
    [CrossRef]
  6. E. Munin, A. B. Villaverde, X. X. Zhang, M. Bass, “Broadband, intensity dependent absorption in tetravalent chromium-doped crystals,” Appl. Phys. Lett. 63, 1739–1741 (1993).
    [CrossRef]
  7. R. D. Stultz, M. B. Camargo, S. T. Montgomery, M. Birnbaum, K. Spariosu, “U4+:SrF2 efficient saturable absorber Q switch for the 1.54 μm erbium:glass laser,” Appl. Phys. Lett. 64, 948–950 (1994).
    [CrossRef]
  8. Y. K. Kuo, W. Chen, R. D. Stultz, M. Birnbaum, “Dy2+:CaF2 saturable-absorber Q switch for the ruby laser,” Appl. Opt. 33, 6348–6351 (1994).
    [CrossRef] [PubMed]
  9. Y. K. Kuo, M. Birnbaum, W. Chen, “Ho:YLiF4 saturable absorber Q-switch for the 2-μm Tm, Cr:Y3Al5O12 laser,” Appl. Phys. Lett. 65, 3060–3062 (1994).
    [CrossRef]
  10. M. B. Camargo, R. D. Stultz, M. Birnbaum, M. Kokta, “Co2+:YSGG saturable absorber Q switch for infrared erbium lasers,” Opt. Lett. 20, 339–341 (1995).
    [CrossRef] [PubMed]
  11. Y. K. Kuo, M. F. Huang, M. Birnbaum, “Tunable Cr4+:YSO Q-switched Cr:LiCAF laser,” IEEE J. Quantum Electron. 31, 657–663 (1995).
    [CrossRef]
  12. Y. K. Kuo, M. Birnbaum, “Passive Q-switching of the alexandrite laser with a Cr4+:YSO solid-state saturable absorber,” Appl. Phys. Lett. 67, 173–175 (1995).
    [CrossRef]
  13. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

1995

M. B. Camargo, R. D. Stultz, M. Birnbaum, M. Kokta, “Co2+:YSGG saturable absorber Q switch for infrared erbium lasers,” Opt. Lett. 20, 339–341 (1995).
[CrossRef] [PubMed]

Y. K. Kuo, M. F. Huang, M. Birnbaum, “Tunable Cr4+:YSO Q-switched Cr:LiCAF laser,” IEEE J. Quantum Electron. 31, 657–663 (1995).
[CrossRef]

Y. K. Kuo, M. Birnbaum, “Passive Q-switching of the alexandrite laser with a Cr4+:YSO solid-state saturable absorber,” Appl. Phys. Lett. 67, 173–175 (1995).
[CrossRef]

1994

R. D. Stultz, M. B. Camargo, S. T. Montgomery, M. Birnbaum, K. Spariosu, “U4+:SrF2 efficient saturable absorber Q switch for the 1.54 μm erbium:glass laser,” Appl. Phys. Lett. 64, 948–950 (1994).
[CrossRef]

Y. K. Kuo, W. Chen, R. D. Stultz, M. Birnbaum, “Dy2+:CaF2 saturable-absorber Q switch for the ruby laser,” Appl. Opt. 33, 6348–6351 (1994).
[CrossRef] [PubMed]

Y. K. Kuo, M. Birnbaum, W. Chen, “Ho:YLiF4 saturable absorber Q-switch for the 2-μm Tm, Cr:Y3Al5O12 laser,” Appl. Phys. Lett. 65, 3060–3062 (1994).
[CrossRef]

1993

V. P. Mikhailov, N. V. Kuleshov, N. I. Zhavoronkov, P. V. Prokohsin, K. V. Yumashev, V. A. Sandulenko, “Optical absorption and nonlinear transmission of tetrahedral V3+ (d2) in yttrium aluminum garnet,” Opt. Mater. 2, 267–272 (1993).
[CrossRef]

K. Spariosu, R. D. Stultz, M. Birnbaum, “Er:Ca5(PO4)3F saturable-absorber Q switch for the Er:glass laser at 1.53 μm,” Appl. Phys. Lett. 62, 2763–2765 (1993).
[CrossRef]

E. Munin, A. B. Villaverde, X. X. Zhang, M. Bass, “Broadband, intensity dependent absorption in tetravalent chromium-doped crystals,” Appl. Phys. Lett. 63, 1739–1741 (1993).
[CrossRef]

1992

Alcock, A. J.

I. J. Miller, A. J. Alcock, J. E. Bernard, “Experimental investigation of Cr4+ in YAG as a passive Q-switch,” in Advanced Solid-State Lasers, G. Dubé, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 322–325.

Andrauskas, D. M.

D. M. Andrauskas, C. Kennedy, “Tetravalent chromium solid-state passive Q switch for Nd:YAG laser systems,” in Advanced Solid-State Lasers, G. Dubé, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 393–397.

Bass, M.

E. Munin, A. B. Villaverde, X. X. Zhang, M. Bass, “Broadband, intensity dependent absorption in tetravalent chromium-doped crystals,” Appl. Phys. Lett. 63, 1739–1741 (1993).
[CrossRef]

Bernard, J. E.

I. J. Miller, A. J. Alcock, J. E. Bernard, “Experimental investigation of Cr4+ in YAG as a passive Q-switch,” in Advanced Solid-State Lasers, G. Dubé, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 322–325.

Birnbaum, M.

M. B. Camargo, R. D. Stultz, M. Birnbaum, M. Kokta, “Co2+:YSGG saturable absorber Q switch for infrared erbium lasers,” Opt. Lett. 20, 339–341 (1995).
[CrossRef] [PubMed]

Y. K. Kuo, M. F. Huang, M. Birnbaum, “Tunable Cr4+:YSO Q-switched Cr:LiCAF laser,” IEEE J. Quantum Electron. 31, 657–663 (1995).
[CrossRef]

Y. K. Kuo, M. Birnbaum, “Passive Q-switching of the alexandrite laser with a Cr4+:YSO solid-state saturable absorber,” Appl. Phys. Lett. 67, 173–175 (1995).
[CrossRef]

Y. K. Kuo, M. Birnbaum, W. Chen, “Ho:YLiF4 saturable absorber Q-switch for the 2-μm Tm, Cr:Y3Al5O12 laser,” Appl. Phys. Lett. 65, 3060–3062 (1994).
[CrossRef]

R. D. Stultz, M. B. Camargo, S. T. Montgomery, M. Birnbaum, K. Spariosu, “U4+:SrF2 efficient saturable absorber Q switch for the 1.54 μm erbium:glass laser,” Appl. Phys. Lett. 64, 948–950 (1994).
[CrossRef]

Y. K. Kuo, W. Chen, R. D. Stultz, M. Birnbaum, “Dy2+:CaF2 saturable-absorber Q switch for the ruby laser,” Appl. Opt. 33, 6348–6351 (1994).
[CrossRef] [PubMed]

K. Spariosu, R. D. Stultz, M. Birnbaum, “Er:Ca5(PO4)3F saturable-absorber Q switch for the Er:glass laser at 1.53 μm,” Appl. Phys. Lett. 62, 2763–2765 (1993).
[CrossRef]

Camargo, M. B.

M. B. Camargo, R. D. Stultz, M. Birnbaum, M. Kokta, “Co2+:YSGG saturable absorber Q switch for infrared erbium lasers,” Opt. Lett. 20, 339–341 (1995).
[CrossRef] [PubMed]

R. D. Stultz, M. B. Camargo, S. T. Montgomery, M. Birnbaum, K. Spariosu, “U4+:SrF2 efficient saturable absorber Q switch for the 1.54 μm erbium:glass laser,” Appl. Phys. Lett. 64, 948–950 (1994).
[CrossRef]

Chen, W.

Y. K. Kuo, W. Chen, R. D. Stultz, M. Birnbaum, “Dy2+:CaF2 saturable-absorber Q switch for the ruby laser,” Appl. Opt. 33, 6348–6351 (1994).
[CrossRef] [PubMed]

Y. K. Kuo, M. Birnbaum, W. Chen, “Ho:YLiF4 saturable absorber Q-switch for the 2-μm Tm, Cr:Y3Al5O12 laser,” Appl. Phys. Lett. 65, 3060–3062 (1994).
[CrossRef]

Demchuk, M. I.

Huang, M. F.

Y. K. Kuo, M. F. Huang, M. Birnbaum, “Tunable Cr4+:YSO Q-switched Cr:LiCAF laser,” IEEE J. Quantum Electron. 31, 657–663 (1995).
[CrossRef]

Kennedy, C.

D. M. Andrauskas, C. Kennedy, “Tetravalent chromium solid-state passive Q switch for Nd:YAG laser systems,” in Advanced Solid-State Lasers, G. Dubé, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 393–397.

Kokta, M.

Kuleshov, N. V.

V. P. Mikhailov, N. V. Kuleshov, N. I. Zhavoronkov, P. V. Prokohsin, K. V. Yumashev, V. A. Sandulenko, “Optical absorption and nonlinear transmission of tetrahedral V3+ (d2) in yttrium aluminum garnet,” Opt. Mater. 2, 267–272 (1993).
[CrossRef]

M. I. Demchuk, V. P. Mikhailov, N. I. Zhavoronkov, N. V. Kuleshov, P. V. Prokoshin, K. V. Yumashev, M. G. Livshits, B. I. Minkov, “Chromium-doped fosterite as a solid-state saturable absorber,” Opt. Lett. 17, 929–930 (1992).
[CrossRef] [PubMed]

Kuo, Y. K.

Y. K. Kuo, M. F. Huang, M. Birnbaum, “Tunable Cr4+:YSO Q-switched Cr:LiCAF laser,” IEEE J. Quantum Electron. 31, 657–663 (1995).
[CrossRef]

Y. K. Kuo, M. Birnbaum, “Passive Q-switching of the alexandrite laser with a Cr4+:YSO solid-state saturable absorber,” Appl. Phys. Lett. 67, 173–175 (1995).
[CrossRef]

Y. K. Kuo, M. Birnbaum, W. Chen, “Ho:YLiF4 saturable absorber Q-switch for the 2-μm Tm, Cr:Y3Al5O12 laser,” Appl. Phys. Lett. 65, 3060–3062 (1994).
[CrossRef]

Y. K. Kuo, W. Chen, R. D. Stultz, M. Birnbaum, “Dy2+:CaF2 saturable-absorber Q switch for the ruby laser,” Appl. Opt. 33, 6348–6351 (1994).
[CrossRef] [PubMed]

Livshits, M. G.

Mikhailov, V. P.

V. P. Mikhailov, N. V. Kuleshov, N. I. Zhavoronkov, P. V. Prokohsin, K. V. Yumashev, V. A. Sandulenko, “Optical absorption and nonlinear transmission of tetrahedral V3+ (d2) in yttrium aluminum garnet,” Opt. Mater. 2, 267–272 (1993).
[CrossRef]

M. I. Demchuk, V. P. Mikhailov, N. I. Zhavoronkov, N. V. Kuleshov, P. V. Prokoshin, K. V. Yumashev, M. G. Livshits, B. I. Minkov, “Chromium-doped fosterite as a solid-state saturable absorber,” Opt. Lett. 17, 929–930 (1992).
[CrossRef] [PubMed]

Miller, I. J.

I. J. Miller, A. J. Alcock, J. E. Bernard, “Experimental investigation of Cr4+ in YAG as a passive Q-switch,” in Advanced Solid-State Lasers, G. Dubé, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 322–325.

Minkov, B. I.

Montgomery, S. T.

R. D. Stultz, M. B. Camargo, S. T. Montgomery, M. Birnbaum, K. Spariosu, “U4+:SrF2 efficient saturable absorber Q switch for the 1.54 μm erbium:glass laser,” Appl. Phys. Lett. 64, 948–950 (1994).
[CrossRef]

Munin, E.

E. Munin, A. B. Villaverde, X. X. Zhang, M. Bass, “Broadband, intensity dependent absorption in tetravalent chromium-doped crystals,” Appl. Phys. Lett. 63, 1739–1741 (1993).
[CrossRef]

Prokohsin, P. V.

V. P. Mikhailov, N. V. Kuleshov, N. I. Zhavoronkov, P. V. Prokohsin, K. V. Yumashev, V. A. Sandulenko, “Optical absorption and nonlinear transmission of tetrahedral V3+ (d2) in yttrium aluminum garnet,” Opt. Mater. 2, 267–272 (1993).
[CrossRef]

Prokoshin, P. V.

Sandulenko, V. A.

V. P. Mikhailov, N. V. Kuleshov, N. I. Zhavoronkov, P. V. Prokohsin, K. V. Yumashev, V. A. Sandulenko, “Optical absorption and nonlinear transmission of tetrahedral V3+ (d2) in yttrium aluminum garnet,” Opt. Mater. 2, 267–272 (1993).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

Spariosu, K.

R. D. Stultz, M. B. Camargo, S. T. Montgomery, M. Birnbaum, K. Spariosu, “U4+:SrF2 efficient saturable absorber Q switch for the 1.54 μm erbium:glass laser,” Appl. Phys. Lett. 64, 948–950 (1994).
[CrossRef]

K. Spariosu, R. D. Stultz, M. Birnbaum, “Er:Ca5(PO4)3F saturable-absorber Q switch for the Er:glass laser at 1.53 μm,” Appl. Phys. Lett. 62, 2763–2765 (1993).
[CrossRef]

Stultz, R. D.

M. B. Camargo, R. D. Stultz, M. Birnbaum, M. Kokta, “Co2+:YSGG saturable absorber Q switch for infrared erbium lasers,” Opt. Lett. 20, 339–341 (1995).
[CrossRef] [PubMed]

Y. K. Kuo, W. Chen, R. D. Stultz, M. Birnbaum, “Dy2+:CaF2 saturable-absorber Q switch for the ruby laser,” Appl. Opt. 33, 6348–6351 (1994).
[CrossRef] [PubMed]

R. D. Stultz, M. B. Camargo, S. T. Montgomery, M. Birnbaum, K. Spariosu, “U4+:SrF2 efficient saturable absorber Q switch for the 1.54 μm erbium:glass laser,” Appl. Phys. Lett. 64, 948–950 (1994).
[CrossRef]

K. Spariosu, R. D. Stultz, M. Birnbaum, “Er:Ca5(PO4)3F saturable-absorber Q switch for the Er:glass laser at 1.53 μm,” Appl. Phys. Lett. 62, 2763–2765 (1993).
[CrossRef]

Villaverde, A. B.

E. Munin, A. B. Villaverde, X. X. Zhang, M. Bass, “Broadband, intensity dependent absorption in tetravalent chromium-doped crystals,” Appl. Phys. Lett. 63, 1739–1741 (1993).
[CrossRef]

Yumashev, K. V.

V. P. Mikhailov, N. V. Kuleshov, N. I. Zhavoronkov, P. V. Prokohsin, K. V. Yumashev, V. A. Sandulenko, “Optical absorption and nonlinear transmission of tetrahedral V3+ (d2) in yttrium aluminum garnet,” Opt. Mater. 2, 267–272 (1993).
[CrossRef]

M. I. Demchuk, V. P. Mikhailov, N. I. Zhavoronkov, N. V. Kuleshov, P. V. Prokoshin, K. V. Yumashev, M. G. Livshits, B. I. Minkov, “Chromium-doped fosterite as a solid-state saturable absorber,” Opt. Lett. 17, 929–930 (1992).
[CrossRef] [PubMed]

Zhang, X. X.

E. Munin, A. B. Villaverde, X. X. Zhang, M. Bass, “Broadband, intensity dependent absorption in tetravalent chromium-doped crystals,” Appl. Phys. Lett. 63, 1739–1741 (1993).
[CrossRef]

Zhavoronkov, N. I.

V. P. Mikhailov, N. V. Kuleshov, N. I. Zhavoronkov, P. V. Prokohsin, K. V. Yumashev, V. A. Sandulenko, “Optical absorption and nonlinear transmission of tetrahedral V3+ (d2) in yttrium aluminum garnet,” Opt. Mater. 2, 267–272 (1993).
[CrossRef]

M. I. Demchuk, V. P. Mikhailov, N. I. Zhavoronkov, N. V. Kuleshov, P. V. Prokoshin, K. V. Yumashev, M. G. Livshits, B. I. Minkov, “Chromium-doped fosterite as a solid-state saturable absorber,” Opt. Lett. 17, 929–930 (1992).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

Y. K. Kuo, M. Birnbaum, W. Chen, “Ho:YLiF4 saturable absorber Q-switch for the 2-μm Tm, Cr:Y3Al5O12 laser,” Appl. Phys. Lett. 65, 3060–3062 (1994).
[CrossRef]

K. Spariosu, R. D. Stultz, M. Birnbaum, “Er:Ca5(PO4)3F saturable-absorber Q switch for the Er:glass laser at 1.53 μm,” Appl. Phys. Lett. 62, 2763–2765 (1993).
[CrossRef]

E. Munin, A. B. Villaverde, X. X. Zhang, M. Bass, “Broadband, intensity dependent absorption in tetravalent chromium-doped crystals,” Appl. Phys. Lett. 63, 1739–1741 (1993).
[CrossRef]

R. D. Stultz, M. B. Camargo, S. T. Montgomery, M. Birnbaum, K. Spariosu, “U4+:SrF2 efficient saturable absorber Q switch for the 1.54 μm erbium:glass laser,” Appl. Phys. Lett. 64, 948–950 (1994).
[CrossRef]

Y. K. Kuo, M. Birnbaum, “Passive Q-switching of the alexandrite laser with a Cr4+:YSO solid-state saturable absorber,” Appl. Phys. Lett. 67, 173–175 (1995).
[CrossRef]

IEEE J. Quantum Electron.

Y. K. Kuo, M. F. Huang, M. Birnbaum, “Tunable Cr4+:YSO Q-switched Cr:LiCAF laser,” IEEE J. Quantum Electron. 31, 657–663 (1995).
[CrossRef]

Opt. Lett.

Opt. Mater.

V. P. Mikhailov, N. V. Kuleshov, N. I. Zhavoronkov, P. V. Prokohsin, K. V. Yumashev, V. A. Sandulenko, “Optical absorption and nonlinear transmission of tetrahedral V3+ (d2) in yttrium aluminum garnet,” Opt. Mater. 2, 267–272 (1993).
[CrossRef]

Other

D. M. Andrauskas, C. Kennedy, “Tetravalent chromium solid-state passive Q switch for Nd:YAG laser systems,” in Advanced Solid-State Lasers, G. Dubé, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 393–397.

I. J. Miller, A. J. Alcock, J. E. Bernard, “Experimental investigation of Cr4+ in YAG as a passive Q-switch,” in Advanced Solid-State Lasers, G. Dubé, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 322–325.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Room-temperature unpolarized absorption spectra of Dy2+:CaF2 crystals.

Fig. 2
Fig. 2

Experimental setup for ruby passive Q switching with a Dy2+:CaF2 solid-state saturable absorber.

Fig. 3
Fig. 3

Ruby laser passive Q switching with Dy2+:CaF2 saturable absorbers: (a) flash-lamp input energy at laser threshold as a function of the reflectivity of the output coupler, (b) Q-switched laser output energy as a function of the reflectivity of the output coupler.

Fig. 4
Fig. 4

Ruby laser passive Q switching with a 15-mm-thick Dy2+:CaF2 saturable absorber and a 78%-reflectivity output coupler: (a) timing of the Q-switched ruby laser output pulse (lower trace) in relation to the ruby free-running temporal profile (upper trace), (b) temporal profile of the Q-switched laser pulse.

Fig. 5
Fig. 5

Numerical simulation of the ruby passive Q switching with a Dy2+:CaF2 solid-state saturable absorber.

Fig. 6
Fig. 6

Pulse width and output energy of the simulated Q-switched laser pulse as a function of the initial ground-state population of the saturable absorber, N a 0.

Fig. 7
Fig. 7

Results of the simulated Q-switched laser pulses as a function of the output-coupler reflectivity: (a) pulse energy, (b) temporal profiles.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

d n d t = [ K g N g - K a N a - β K a ( N a 0 - N a ) - γ c ] n ,
d N g d t = R p - γ g N g - 2 K g N g n ,
d N a d t = γ a ( N a 0 - N a ) - K a N a n .
N g 0 K a N a 0 + γ c K g .
N th β K a N a 0 + γ c K g .
N f - N g 0 - N th ln ( N f N g 0 ) = 0 ,
n p = - 1 2 [ N th - N g 0 - N th ln ( N th N g 0 ) ] .
loss = K a N a + β K a ( N a 0 - N a ) + γ c K g .

Metrics