Abstract

Extinction measurements with a laser diode (0.685 μm) and a Fourier transform infrared spectrometer (2–18 μm) were performed on laboratory ice clouds (5 μm ≤ D ≤ 70 μm) grown at a variety of temperatures, and thus at a variety of crystal habits and average projected crystal area. Ice clouds were grown by nucleation of a supercooled water droplet cloud with a rod cooled with liquid nitrogen. The ice crystals observed were mainly plates and dendrites at the coldest temperatures (≈−15 °C) and were mainly columns and needles at warmer temperatures (≈−5 °C). The crystals were imaged with both a novel microscope equipped with a video camera and a heated glass slide and a continuously running Formvar replicator. The IR spectral optical-depth measurements reveal a narrow (0.5-μm-width) extinction minimum at 2.84 μm and a wider (3-μm-width) minimum at 10.5 μm. These partial windows are associated with wavelengths where the real part of the index of refraction for bulk ice has a relative minimum so that extinction is primarily due to absorption rather than scattering (i.e., the Christiansen effect). Bulk ice has absorption maxima near the window wavelengths. IR extinction efficiency has a noticeable wavelength dependence on the average projected crystal area and therefore on the temperature-dependent crystal properties. The average-size parameters in the visible for different temperatures ranged from 64 to 128, and in the IR they ranged from 2.5 to 44. The extinction efficiency and the single-scatter albedo for ice spheres as computed from Mie scattering also show evidence of the Christiansen effect.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Fu, K. N. Liou, “Parameterization of the radiative properties of cirrus clouds,” J. Atmos. Sci. 50, 2008–2025 (1993).
    [CrossRef]
  2. C. Prabhakara, J. Yoo, G. Dalu, R. S. Fraser, “Deep optically thin cirrus clouds in polar regions. Part I: Infrared extinction characteristics,” J. Appl. Meteorol. 29, 1313–1329 (1990).
    [CrossRef]
  3. S. C. Ou, K. N. Liou, W. M. Gooch, Y. Takano, “Remote sensing of cirrus cloud parameters using advanced very-high-resolution radiometer 3.7- and 10.9-μm channels,” Appl. Opt. 32, 2171–2180 (1993).
    [CrossRef] [PubMed]
  4. D. K. Lynch, J. A. Hackwell, R. Russell, “The 2–13 μm spectrum of cirrus clouds,” presented at the Second Symposium on Global Change Studies, New Orleans, La., 14–18 January 1991.
  5. D. Spänkuch, W. Döhler, “Radiative properties of cirrus clouds in the middle IR derived from Fourier spectrometer measurements from space,” Z. Meteorol. 35, 314–324 (1985).
  6. K. N. Liou, Y. Takano, S. C. Ou, A. Heymsfield, W. Kreiss, “Infrared transmission through cirrus clouds: a radiative model for target detection,” Appl. Opt. 29, 1886–1896 (1990).
    [CrossRef] [PubMed]
  7. C. F. Bohren, G. Koh, “Forward-scattering corrected extinction by nonspherical particles,” Appl. Opt. 24, 1023–1029 (1985).
    [CrossRef] [PubMed]
  8. D. L. Hutt, L. R. Bissonnette, D. St. Germain, J. Oman, “Extinction of visible and infrared beams by falling snow,” Appl. Opt. 31, 5121–5132 (1992).
    [CrossRef] [PubMed]
  9. M. A. Seagraves, “Precipitation rate and extinction in falling snow,” J. Atmos. Sci. 41, 1827–1835 (1984).
    [CrossRef]
  10. Y. K. Takano, K. N. Liou, P. Minnis, “The effects of small ice crystals on cirrus radiative properties,” J. Atmos. Sci. 49, 1487–1493 (1992).
    [CrossRef]
  11. W. P. Arnott, Y. Y. Dong, J. Hallett, “Role of small ice crystals in radiative properties of cirrus: a case study, FIRE II, 22 Nov 1991,” J. Geophys. Res. 99, 1371–1381 (1994).
    [CrossRef]
  12. O. A. Volkovitskiy, L. N. Pavlova, A. G. Petrushin, “Scattering of light by ice crystals,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 16, 98–102 (1980).
  13. A. Macke, “Scattering of light by polyhedral ice crystals,”Appl. Opt. 32, 2780–2788 (1993).
    [CrossRef] [PubMed]
  14. B. T. Draine, P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A. 11, 1491–1499 (1994).
    [CrossRef]
  15. K. Sassen, “Infrared (10.6-μm) scattering and extinction in laboratory water and ice clouds,” Appl. Opt. 20, 185–193 (1981).
    [CrossRef] [PubMed]
  16. P. J. Huffman, W. R. Thursby, “Light scattering by ice crystals,” J. Atmos. Sci. 26, 1073–1077 (1969).
    [CrossRef]
  17. Y. Furukawa, J. Hallett, “Experimental study of the “halo” formation in artificial ice cloud,” in Physics and Chemistry of Ice, N. Maeno, T. Hondoh, eds., (Hokkaido U. Press, Sapporo, Japan), pp. 326–327.
  18. J. Hallett, “Measurements of size concentration and structure of atmospheric particulates by the airborne continuous replicator,” in Cloud Particle Replicator for Use on a Pressurized Aircraft, Parts I and II, Suppl. Final Rep. AFGL-TR-76-0149 (U.S. Air Force Geophysical Laboratory, Hanscom Air Force Base, Mass., 1976).
  19. H. R. Pruppacher, J. D. Klett, Microphysics of Clouds and Radiation (Reidel, Dordrecht, The Netherlands, 1980) p. 340.
  20. H. R. Pruppacher, J. D. Klett, Microphysics of Clouds and Radiation (Reidel, Dordrecht, The Netherlands, 1980) p. 40.
  21. M. Murakami, T. Matsuo, “Development of the hydrometeor videosonde,” J. Atmos. Oceanic Technol. 7, 613–620 (1990).
    [CrossRef]
  22. A. Adriani, G. P. Gobbi, M. Viterbini, S. Ugazio, “Combined system for observations of tropospheric and stratospheric thin clouds,” J. Atmos. Oceanic Technol. 10, 34–40 (1993).
    [CrossRef]
  23. J. Hallett, “Faceted snow crystals,” J. Opt. Soc. Am. A. 4, 581–588 and Plates I–III (1987).
    [CrossRef]
  24. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  25. S. G. Warren, “Optical constants of ice from the ultraviolet to the microwave,” Appl. Opt. 23, 1206–1225 (1984).
    [CrossRef] [PubMed]
  26. H. R. Carlon, “Christiansen effect in IR spectra of soil-derived atmospheric dusts,” Appl. Opt. 18, 3610–3614 (1979).
    [CrossRef] [PubMed]
  27. H. R. Carlon, “Christiansen effect in IR spectra of soil-derived atmospheric dusts: addenda,” Appl. Opt. 19, 1892 (1980).
    [CrossRef] [PubMed]
  28. F. D. Bryant, P. Latimer, “Optical efficiencies of large particles of arbitrary shape and orientation,” J. Colloid Interface Sci. 30, 291–304 (1969).
    [CrossRef]
  29. W. M. Irvine, J. B. Pollack, “Infrared optical properties of water and ice spheres,” Icarus 8, 324–360 (1968).
    [CrossRef]
  30. L. Kou, D. Labrie, P. Chylek, “Refractive indices of water and ice in the 0.65- to 2.5-μm spectral range,” Appl. Opt. 32, 3531–3540 (1993).
    [CrossRef] [PubMed]
  31. R. G. Knollenberg, K. Kelly, J. C. Wilson, “Measurements of high number densities of ice crystals in the tops of tropical cumulonimbus,” J. Geophys. Res. 98, 8639–8664 (1993).
    [CrossRef]

1994 (2)

W. P. Arnott, Y. Y. Dong, J. Hallett, “Role of small ice crystals in radiative properties of cirrus: a case study, FIRE II, 22 Nov 1991,” J. Geophys. Res. 99, 1371–1381 (1994).
[CrossRef]

B. T. Draine, P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A. 11, 1491–1499 (1994).
[CrossRef]

1993 (6)

L. Kou, D. Labrie, P. Chylek, “Refractive indices of water and ice in the 0.65- to 2.5-μm spectral range,” Appl. Opt. 32, 3531–3540 (1993).
[CrossRef] [PubMed]

R. G. Knollenberg, K. Kelly, J. C. Wilson, “Measurements of high number densities of ice crystals in the tops of tropical cumulonimbus,” J. Geophys. Res. 98, 8639–8664 (1993).
[CrossRef]

A. Macke, “Scattering of light by polyhedral ice crystals,”Appl. Opt. 32, 2780–2788 (1993).
[CrossRef] [PubMed]

A. Adriani, G. P. Gobbi, M. Viterbini, S. Ugazio, “Combined system for observations of tropospheric and stratospheric thin clouds,” J. Atmos. Oceanic Technol. 10, 34–40 (1993).
[CrossRef]

Q. Fu, K. N. Liou, “Parameterization of the radiative properties of cirrus clouds,” J. Atmos. Sci. 50, 2008–2025 (1993).
[CrossRef]

S. C. Ou, K. N. Liou, W. M. Gooch, Y. Takano, “Remote sensing of cirrus cloud parameters using advanced very-high-resolution radiometer 3.7- and 10.9-μm channels,” Appl. Opt. 32, 2171–2180 (1993).
[CrossRef] [PubMed]

1992 (2)

D. L. Hutt, L. R. Bissonnette, D. St. Germain, J. Oman, “Extinction of visible and infrared beams by falling snow,” Appl. Opt. 31, 5121–5132 (1992).
[CrossRef] [PubMed]

Y. K. Takano, K. N. Liou, P. Minnis, “The effects of small ice crystals on cirrus radiative properties,” J. Atmos. Sci. 49, 1487–1493 (1992).
[CrossRef]

1990 (3)

K. N. Liou, Y. Takano, S. C. Ou, A. Heymsfield, W. Kreiss, “Infrared transmission through cirrus clouds: a radiative model for target detection,” Appl. Opt. 29, 1886–1896 (1990).
[CrossRef] [PubMed]

C. Prabhakara, J. Yoo, G. Dalu, R. S. Fraser, “Deep optically thin cirrus clouds in polar regions. Part I: Infrared extinction characteristics,” J. Appl. Meteorol. 29, 1313–1329 (1990).
[CrossRef]

M. Murakami, T. Matsuo, “Development of the hydrometeor videosonde,” J. Atmos. Oceanic Technol. 7, 613–620 (1990).
[CrossRef]

1987 (1)

J. Hallett, “Faceted snow crystals,” J. Opt. Soc. Am. A. 4, 581–588 and Plates I–III (1987).
[CrossRef]

1985 (2)

D. Spänkuch, W. Döhler, “Radiative properties of cirrus clouds in the middle IR derived from Fourier spectrometer measurements from space,” Z. Meteorol. 35, 314–324 (1985).

C. F. Bohren, G. Koh, “Forward-scattering corrected extinction by nonspherical particles,” Appl. Opt. 24, 1023–1029 (1985).
[CrossRef] [PubMed]

1984 (2)

M. A. Seagraves, “Precipitation rate and extinction in falling snow,” J. Atmos. Sci. 41, 1827–1835 (1984).
[CrossRef]

S. G. Warren, “Optical constants of ice from the ultraviolet to the microwave,” Appl. Opt. 23, 1206–1225 (1984).
[CrossRef] [PubMed]

1981 (1)

1980 (2)

H. R. Carlon, “Christiansen effect in IR spectra of soil-derived atmospheric dusts: addenda,” Appl. Opt. 19, 1892 (1980).
[CrossRef] [PubMed]

O. A. Volkovitskiy, L. N. Pavlova, A. G. Petrushin, “Scattering of light by ice crystals,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 16, 98–102 (1980).

1979 (1)

1969 (2)

F. D. Bryant, P. Latimer, “Optical efficiencies of large particles of arbitrary shape and orientation,” J. Colloid Interface Sci. 30, 291–304 (1969).
[CrossRef]

P. J. Huffman, W. R. Thursby, “Light scattering by ice crystals,” J. Atmos. Sci. 26, 1073–1077 (1969).
[CrossRef]

1968 (1)

W. M. Irvine, J. B. Pollack, “Infrared optical properties of water and ice spheres,” Icarus 8, 324–360 (1968).
[CrossRef]

Adriani, A.

A. Adriani, G. P. Gobbi, M. Viterbini, S. Ugazio, “Combined system for observations of tropospheric and stratospheric thin clouds,” J. Atmos. Oceanic Technol. 10, 34–40 (1993).
[CrossRef]

Arnott, W. P.

W. P. Arnott, Y. Y. Dong, J. Hallett, “Role of small ice crystals in radiative properties of cirrus: a case study, FIRE II, 22 Nov 1991,” J. Geophys. Res. 99, 1371–1381 (1994).
[CrossRef]

Bissonnette, L. R.

Bohren, C. F.

C. F. Bohren, G. Koh, “Forward-scattering corrected extinction by nonspherical particles,” Appl. Opt. 24, 1023–1029 (1985).
[CrossRef] [PubMed]

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Bryant, F. D.

F. D. Bryant, P. Latimer, “Optical efficiencies of large particles of arbitrary shape and orientation,” J. Colloid Interface Sci. 30, 291–304 (1969).
[CrossRef]

Carlon, H. R.

Chylek, P.

Dalu, G.

C. Prabhakara, J. Yoo, G. Dalu, R. S. Fraser, “Deep optically thin cirrus clouds in polar regions. Part I: Infrared extinction characteristics,” J. Appl. Meteorol. 29, 1313–1329 (1990).
[CrossRef]

Döhler, W.

D. Spänkuch, W. Döhler, “Radiative properties of cirrus clouds in the middle IR derived from Fourier spectrometer measurements from space,” Z. Meteorol. 35, 314–324 (1985).

Dong, Y. Y.

W. P. Arnott, Y. Y. Dong, J. Hallett, “Role of small ice crystals in radiative properties of cirrus: a case study, FIRE II, 22 Nov 1991,” J. Geophys. Res. 99, 1371–1381 (1994).
[CrossRef]

Draine, B. T.

B. T. Draine, P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A. 11, 1491–1499 (1994).
[CrossRef]

Flatau, P. J.

B. T. Draine, P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A. 11, 1491–1499 (1994).
[CrossRef]

Fraser, R. S.

C. Prabhakara, J. Yoo, G. Dalu, R. S. Fraser, “Deep optically thin cirrus clouds in polar regions. Part I: Infrared extinction characteristics,” J. Appl. Meteorol. 29, 1313–1329 (1990).
[CrossRef]

Fu, Q.

Q. Fu, K. N. Liou, “Parameterization of the radiative properties of cirrus clouds,” J. Atmos. Sci. 50, 2008–2025 (1993).
[CrossRef]

Furukawa, Y.

Y. Furukawa, J. Hallett, “Experimental study of the “halo” formation in artificial ice cloud,” in Physics and Chemistry of Ice, N. Maeno, T. Hondoh, eds., (Hokkaido U. Press, Sapporo, Japan), pp. 326–327.

Germain, D. St.

Gobbi, G. P.

A. Adriani, G. P. Gobbi, M. Viterbini, S. Ugazio, “Combined system for observations of tropospheric and stratospheric thin clouds,” J. Atmos. Oceanic Technol. 10, 34–40 (1993).
[CrossRef]

Gooch, W. M.

Hackwell, J. A.

D. K. Lynch, J. A. Hackwell, R. Russell, “The 2–13 μm spectrum of cirrus clouds,” presented at the Second Symposium on Global Change Studies, New Orleans, La., 14–18 January 1991.

Hallett, J.

W. P. Arnott, Y. Y. Dong, J. Hallett, “Role of small ice crystals in radiative properties of cirrus: a case study, FIRE II, 22 Nov 1991,” J. Geophys. Res. 99, 1371–1381 (1994).
[CrossRef]

J. Hallett, “Faceted snow crystals,” J. Opt. Soc. Am. A. 4, 581–588 and Plates I–III (1987).
[CrossRef]

Y. Furukawa, J. Hallett, “Experimental study of the “halo” formation in artificial ice cloud,” in Physics and Chemistry of Ice, N. Maeno, T. Hondoh, eds., (Hokkaido U. Press, Sapporo, Japan), pp. 326–327.

J. Hallett, “Measurements of size concentration and structure of atmospheric particulates by the airborne continuous replicator,” in Cloud Particle Replicator for Use on a Pressurized Aircraft, Parts I and II, Suppl. Final Rep. AFGL-TR-76-0149 (U.S. Air Force Geophysical Laboratory, Hanscom Air Force Base, Mass., 1976).

Heymsfield, A.

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Huffman, P. J.

P. J. Huffman, W. R. Thursby, “Light scattering by ice crystals,” J. Atmos. Sci. 26, 1073–1077 (1969).
[CrossRef]

Hutt, D. L.

Irvine, W. M.

W. M. Irvine, J. B. Pollack, “Infrared optical properties of water and ice spheres,” Icarus 8, 324–360 (1968).
[CrossRef]

Kelly, K.

R. G. Knollenberg, K. Kelly, J. C. Wilson, “Measurements of high number densities of ice crystals in the tops of tropical cumulonimbus,” J. Geophys. Res. 98, 8639–8664 (1993).
[CrossRef]

Klett, J. D.

H. R. Pruppacher, J. D. Klett, Microphysics of Clouds and Radiation (Reidel, Dordrecht, The Netherlands, 1980) p. 340.

H. R. Pruppacher, J. D. Klett, Microphysics of Clouds and Radiation (Reidel, Dordrecht, The Netherlands, 1980) p. 40.

Knollenberg, R. G.

R. G. Knollenberg, K. Kelly, J. C. Wilson, “Measurements of high number densities of ice crystals in the tops of tropical cumulonimbus,” J. Geophys. Res. 98, 8639–8664 (1993).
[CrossRef]

Koh, G.

Kou, L.

Kreiss, W.

Labrie, D.

Latimer, P.

F. D. Bryant, P. Latimer, “Optical efficiencies of large particles of arbitrary shape and orientation,” J. Colloid Interface Sci. 30, 291–304 (1969).
[CrossRef]

Liou, K. N.

Lynch, D. K.

D. K. Lynch, J. A. Hackwell, R. Russell, “The 2–13 μm spectrum of cirrus clouds,” presented at the Second Symposium on Global Change Studies, New Orleans, La., 14–18 January 1991.

Macke, A.

Matsuo, T.

M. Murakami, T. Matsuo, “Development of the hydrometeor videosonde,” J. Atmos. Oceanic Technol. 7, 613–620 (1990).
[CrossRef]

Minnis, P.

Y. K. Takano, K. N. Liou, P. Minnis, “The effects of small ice crystals on cirrus radiative properties,” J. Atmos. Sci. 49, 1487–1493 (1992).
[CrossRef]

Murakami, M.

M. Murakami, T. Matsuo, “Development of the hydrometeor videosonde,” J. Atmos. Oceanic Technol. 7, 613–620 (1990).
[CrossRef]

Oman, J.

Ou, S. C.

Pavlova, L. N.

O. A. Volkovitskiy, L. N. Pavlova, A. G. Petrushin, “Scattering of light by ice crystals,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 16, 98–102 (1980).

Petrushin, A. G.

O. A. Volkovitskiy, L. N. Pavlova, A. G. Petrushin, “Scattering of light by ice crystals,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 16, 98–102 (1980).

Pollack, J. B.

W. M. Irvine, J. B. Pollack, “Infrared optical properties of water and ice spheres,” Icarus 8, 324–360 (1968).
[CrossRef]

Prabhakara, C.

C. Prabhakara, J. Yoo, G. Dalu, R. S. Fraser, “Deep optically thin cirrus clouds in polar regions. Part I: Infrared extinction characteristics,” J. Appl. Meteorol. 29, 1313–1329 (1990).
[CrossRef]

Pruppacher, H. R.

H. R. Pruppacher, J. D. Klett, Microphysics of Clouds and Radiation (Reidel, Dordrecht, The Netherlands, 1980) p. 40.

H. R. Pruppacher, J. D. Klett, Microphysics of Clouds and Radiation (Reidel, Dordrecht, The Netherlands, 1980) p. 340.

Russell, R.

D. K. Lynch, J. A. Hackwell, R. Russell, “The 2–13 μm spectrum of cirrus clouds,” presented at the Second Symposium on Global Change Studies, New Orleans, La., 14–18 January 1991.

Sassen, K.

Seagraves, M. A.

M. A. Seagraves, “Precipitation rate and extinction in falling snow,” J. Atmos. Sci. 41, 1827–1835 (1984).
[CrossRef]

Spänkuch, D.

D. Spänkuch, W. Döhler, “Radiative properties of cirrus clouds in the middle IR derived from Fourier spectrometer measurements from space,” Z. Meteorol. 35, 314–324 (1985).

Takano, Y.

Takano, Y. K.

Y. K. Takano, K. N. Liou, P. Minnis, “The effects of small ice crystals on cirrus radiative properties,” J. Atmos. Sci. 49, 1487–1493 (1992).
[CrossRef]

Thursby, W. R.

P. J. Huffman, W. R. Thursby, “Light scattering by ice crystals,” J. Atmos. Sci. 26, 1073–1077 (1969).
[CrossRef]

Ugazio, S.

A. Adriani, G. P. Gobbi, M. Viterbini, S. Ugazio, “Combined system for observations of tropospheric and stratospheric thin clouds,” J. Atmos. Oceanic Technol. 10, 34–40 (1993).
[CrossRef]

Viterbini, M.

A. Adriani, G. P. Gobbi, M. Viterbini, S. Ugazio, “Combined system for observations of tropospheric and stratospheric thin clouds,” J. Atmos. Oceanic Technol. 10, 34–40 (1993).
[CrossRef]

Volkovitskiy, O. A.

O. A. Volkovitskiy, L. N. Pavlova, A. G. Petrushin, “Scattering of light by ice crystals,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 16, 98–102 (1980).

Warren, S. G.

Wilson, J. C.

R. G. Knollenberg, K. Kelly, J. C. Wilson, “Measurements of high number densities of ice crystals in the tops of tropical cumulonimbus,” J. Geophys. Res. 98, 8639–8664 (1993).
[CrossRef]

Yoo, J.

C. Prabhakara, J. Yoo, G. Dalu, R. S. Fraser, “Deep optically thin cirrus clouds in polar regions. Part I: Infrared extinction characteristics,” J. Appl. Meteorol. 29, 1313–1329 (1990).
[CrossRef]

Appl. Opt. (10)

S. C. Ou, K. N. Liou, W. M. Gooch, Y. Takano, “Remote sensing of cirrus cloud parameters using advanced very-high-resolution radiometer 3.7- and 10.9-μm channels,” Appl. Opt. 32, 2171–2180 (1993).
[CrossRef] [PubMed]

K. N. Liou, Y. Takano, S. C. Ou, A. Heymsfield, W. Kreiss, “Infrared transmission through cirrus clouds: a radiative model for target detection,” Appl. Opt. 29, 1886–1896 (1990).
[CrossRef] [PubMed]

C. F. Bohren, G. Koh, “Forward-scattering corrected extinction by nonspherical particles,” Appl. Opt. 24, 1023–1029 (1985).
[CrossRef] [PubMed]

D. L. Hutt, L. R. Bissonnette, D. St. Germain, J. Oman, “Extinction of visible and infrared beams by falling snow,” Appl. Opt. 31, 5121–5132 (1992).
[CrossRef] [PubMed]

A. Macke, “Scattering of light by polyhedral ice crystals,”Appl. Opt. 32, 2780–2788 (1993).
[CrossRef] [PubMed]

K. Sassen, “Infrared (10.6-μm) scattering and extinction in laboratory water and ice clouds,” Appl. Opt. 20, 185–193 (1981).
[CrossRef] [PubMed]

S. G. Warren, “Optical constants of ice from the ultraviolet to the microwave,” Appl. Opt. 23, 1206–1225 (1984).
[CrossRef] [PubMed]

H. R. Carlon, “Christiansen effect in IR spectra of soil-derived atmospheric dusts,” Appl. Opt. 18, 3610–3614 (1979).
[CrossRef] [PubMed]

H. R. Carlon, “Christiansen effect in IR spectra of soil-derived atmospheric dusts: addenda,” Appl. Opt. 19, 1892 (1980).
[CrossRef] [PubMed]

L. Kou, D. Labrie, P. Chylek, “Refractive indices of water and ice in the 0.65- to 2.5-μm spectral range,” Appl. Opt. 32, 3531–3540 (1993).
[CrossRef] [PubMed]

Icarus (1)

W. M. Irvine, J. B. Pollack, “Infrared optical properties of water and ice spheres,” Icarus 8, 324–360 (1968).
[CrossRef]

Izv. Acad. Sci. USSR Atmos. Oceanic Phys. (1)

O. A. Volkovitskiy, L. N. Pavlova, A. G. Petrushin, “Scattering of light by ice crystals,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 16, 98–102 (1980).

J. Appl. Meteorol. (1)

C. Prabhakara, J. Yoo, G. Dalu, R. S. Fraser, “Deep optically thin cirrus clouds in polar regions. Part I: Infrared extinction characteristics,” J. Appl. Meteorol. 29, 1313–1329 (1990).
[CrossRef]

J. Atmos. Oceanic Technol. (2)

M. Murakami, T. Matsuo, “Development of the hydrometeor videosonde,” J. Atmos. Oceanic Technol. 7, 613–620 (1990).
[CrossRef]

A. Adriani, G. P. Gobbi, M. Viterbini, S. Ugazio, “Combined system for observations of tropospheric and stratospheric thin clouds,” J. Atmos. Oceanic Technol. 10, 34–40 (1993).
[CrossRef]

J. Atmos. Sci. (4)

Q. Fu, K. N. Liou, “Parameterization of the radiative properties of cirrus clouds,” J. Atmos. Sci. 50, 2008–2025 (1993).
[CrossRef]

M. A. Seagraves, “Precipitation rate and extinction in falling snow,” J. Atmos. Sci. 41, 1827–1835 (1984).
[CrossRef]

Y. K. Takano, K. N. Liou, P. Minnis, “The effects of small ice crystals on cirrus radiative properties,” J. Atmos. Sci. 49, 1487–1493 (1992).
[CrossRef]

P. J. Huffman, W. R. Thursby, “Light scattering by ice crystals,” J. Atmos. Sci. 26, 1073–1077 (1969).
[CrossRef]

J. Colloid Interface Sci. (1)

F. D. Bryant, P. Latimer, “Optical efficiencies of large particles of arbitrary shape and orientation,” J. Colloid Interface Sci. 30, 291–304 (1969).
[CrossRef]

J. Geophys. Res. (2)

R. G. Knollenberg, K. Kelly, J. C. Wilson, “Measurements of high number densities of ice crystals in the tops of tropical cumulonimbus,” J. Geophys. Res. 98, 8639–8664 (1993).
[CrossRef]

W. P. Arnott, Y. Y. Dong, J. Hallett, “Role of small ice crystals in radiative properties of cirrus: a case study, FIRE II, 22 Nov 1991,” J. Geophys. Res. 99, 1371–1381 (1994).
[CrossRef]

J. Opt. Soc. Am. A. (2)

B. T. Draine, P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A. 11, 1491–1499 (1994).
[CrossRef]

J. Hallett, “Faceted snow crystals,” J. Opt. Soc. Am. A. 4, 581–588 and Plates I–III (1987).
[CrossRef]

Z. Meteorol. (1)

D. Spänkuch, W. Döhler, “Radiative properties of cirrus clouds in the middle IR derived from Fourier spectrometer measurements from space,” Z. Meteorol. 35, 314–324 (1985).

Other (6)

Y. Furukawa, J. Hallett, “Experimental study of the “halo” formation in artificial ice cloud,” in Physics and Chemistry of Ice, N. Maeno, T. Hondoh, eds., (Hokkaido U. Press, Sapporo, Japan), pp. 326–327.

J. Hallett, “Measurements of size concentration and structure of atmospheric particulates by the airborne continuous replicator,” in Cloud Particle Replicator for Use on a Pressurized Aircraft, Parts I and II, Suppl. Final Rep. AFGL-TR-76-0149 (U.S. Air Force Geophysical Laboratory, Hanscom Air Force Base, Mass., 1976).

H. R. Pruppacher, J. D. Klett, Microphysics of Clouds and Radiation (Reidel, Dordrecht, The Netherlands, 1980) p. 340.

H. R. Pruppacher, J. D. Klett, Microphysics of Clouds and Radiation (Reidel, Dordrecht, The Netherlands, 1980) p. 40.

D. K. Lynch, J. A. Hackwell, R. Russell, “The 2–13 μm spectrum of cirrus clouds,” presented at the Second Symposium on Global Change Studies, New Orleans, La., 14–18 January 1991.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Schematic side view of the extinction measurement.

Fig. 2
Fig. 2

Visible optical depth (τvis) during a typical cloud lifetime. This cloud corresponds to the crystal replica in Fig. 3 and the number concentration in Fig. 4, below.

Fig. 3
Fig. 3

Photographs of ice crystals collected with the Formvar technique.

Fig. 4
Fig. 4

Number concentration computed from the replicator data, plate crystals, for a cold-box midpoint temperature of −15 °C.

Fig. 5
Fig. 5

Cloud-scope schematic: (a) overall, (b) detailed.

Fig. 6
Fig. 6

Cloud-scope images at (a) −21 °C and (b) −10 °C for crystals in various stages of (a) melting or (b) sublimation. Crystals grew in a region of strong temperature gradient where, for example, the temperature at the top of the cold box in Fig. 1 was −3 °C and 15 cm below the cold-box top the temperature was −21 °C.

Fig. 7
Fig. 7

(a) IR extinction efficiency during different portions of the cloud life cycle for plate and dendrite crystals and a cold-box temperature of −21 °C. The different curves correspond to different cloud properties during the cloud life cycle. Bands in which gaseous or window absorption was severe are indicated by vertical bars. (b) Number concentration based on crystal D and τvis = 1, yielding 〈D〉 = 31.3 μm, computed 〈H〉 = 9.2 μm, 〈aspect ratio〉 = 3.2, 〈P〉 = 628 μm2, and 365 crystals per cm3.

Fig. 8
Fig. 8

(a) IR extinction efficiency during different portions of the cloud life cycle for plate crystals and a cold-box temperature of −17 °C. The nearly coincident curves correspond to optical depths τvis = (1.60, 1.20). (b) Number concentration based on crystal D and τvis = 1, yielding 〈D〉 = 23.3 μm, computed 〈H〉 = 8.2 μm, 〈aspect ratio〉 = 2.8, 〈P〉 = 349 μm2, and 656 crystals per cm3.

Fig. 9
Fig. 9

(a) IR extinction efficiency for mainly column crystals and a cold-box temperature of −10 °C. (b) Number concentration based on crystal H and τvis = 1, yielding 〈D〉 = 15.6 μm, 〈H〉 = 21.5 μm, 〈aspect ratio〉 = 0.8, 〈P〉 = 345 μm2 and 665 crystals per cm3.

Fig. 10
Fig. 10

(a) IR extinction efficiency for mainly column crystals and a cold-box temperature of −7 °C. The curve corresponds to optical depth τvis = 0.47. (b) Number concentration based on crystal H and τvis = 1, yielding 〈D〉 = 9.8 μm, 〈H〉 = 14.8 μm, 〈aspect ratio〉 = 0.7, 〈P〉 = 145 μm2, and 1582 crystals per cm3.

Fig. 11
Fig. 11

(a) IR extinction efficiency during different portions of the cloud life cycle for mainly column crystals and a cold-box temperature of −5 °C. (b) Number concentration based on crystal H and τvis = 1, yielding 〈D〉 = 14.0 μm, 〈H〉 = 16.6 μm, 〈aspect ratio〉 = 0.9, 〈P〉 = 249 μm2, and 921 crystals per cm3.

Fig. 12
Fig. 12

(a) Real and (b) imaginary parts of the refractive index for bulk ice.

Fig. 13
Fig. 13

Computed extinction efficiency of ice spheres for wavelengths between 2 and 4 μm.

Fig. 14
Fig. 14

Computed single-scatter albedo of ice spheres for wavelengths between 2 and 4 μm.

Fig. 15
Fig. 15

Computed extinction efficiency of ice spheres for wavelengths between 4 and 18 μm.

Fig. 16
Fig. 16

Computed single-scatter albedo of ice spheres for wavelengths between 4 and 18 μm.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

τ = ln ( T ) .
N ( D ) = film speed 1 v c ( D ) 1 L # particles area of film ,
τ vis = 2 z D min D max 3 4 D [ 3 4 D + H ( D ) ] N ( D ) d D ,
H ( D ) = 1.41 × 10 2 D 0.474
N T = D min D max N ( D ) d D .
P = D min D max P [ D ; H ( D ) ] N ( D ) d D N T .
τ vis length = σ ext = D min D max σ ext ( D ) N ( D ) d D = 2 N T P .
τ IR ( λ ) length = D min D max Q extIR ( λ ; D ) P [ D ; H ( D ) ] N ( D ) d D ,
Q extIR ( λ ) = 1 N T P D min D max Q extIR ( λ ; D ) P [ D ; H ( D ) ] N ( D ) d D ,
Q extIR ( λ ) = 2 τ IR ( λ ) τ vis .
Q extIR ( λ ) = 2 ln ( T IR ) ln ( T vis ) .
x = π ( D H ) 1 / 2 λ ,
σ ext ( λ ; D ) = 2 P { 1 exp ( k D n i ) cos [ k D ( n r 1 ) ] } ,
σ ext ( λ ; D ) σ ext ( λ ; D ) 2 P = exp ( k D n i ) .

Metrics