Abstract

A novel, simple tuning mechanism for single-mode, pseudo-external-cavity diode lasers has been developed. The model calculations predict that the laser can be tuned continuously by as much as 300 GHz in the vicinity of the chosen frequency without locking it to an external cavity. Experimentally, the continuous tuning range is approximately 120 GHz at constant current and temperature for the 7-cm-long pseudo-external cavity; this is several times more than previously reported. A turning wedge inside the laser cavity is used as the tuning element. The laser is based on a commercial laser diode chip, and a diffraction grating is used for feedback. The total tuning range depends on the laser diode type and can be up to 20 nm.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
    [CrossRef]
  2. J. C. Camparo, “The diode laser in atomic physics,” Contemp. Phys. 26, 443–477 (1985).
    [CrossRef]
  3. M. Ohtsu, T. Tako, “Coherence in semiconductor lasers,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1988), Vol. 25, pp. 191–278.
    [CrossRef]
  4. K. Gibble, Sloane Physics Laboratory, Yale University, 211 Prospect St., New Haven, Conn. 06511. (personal communication, May1989).
  5. P. McNichol, H. J. Metcalf, “Synchronous cavity mode and feedback wavelength scanning in dye laser oscillators with grating,” Appl. Opt. 24, 2757–2761 (1985).
    [CrossRef]
  6. T. Day, F. Luecke, M. Brownell, “Continuously tunable diode laser,” Lasers Optronics 12, 15–17 (1993).
  7. Z. M. Chuang, D. A. Conen, L. A. Coldren, “Tuning characteristics of a tunable-single-frequency external cavity laser,” IEEE J. Quantum Electron. 26, 1200–1205 (1990).
    [CrossRef]
  8. K. Liu, M. G. Littman, “Novel geometry for single-mode scanning of tunable lasers,” Opt. Lett. 6, 117–118 (1981).
    [CrossRef] [PubMed]
  9. P. Zorabedian, “Characteristics of a grating-external-cavity semiconductor laser containing intracavity prism beam expanders,” J. Lightwave Technol. 10, 330–335 (1992).
    [CrossRef]
  10. F. J. Duarte, L. W. Hillman, eds., Dye Laser Principles, (Academic, New York, 1990), pp. 133–183.
  11. H. Asakura, K. Hagiwara, M. Iida, K. Eda, “External cavity semiconductor laser with a Fourier grating and an aspheric lens,” Appl. Opt. 32, 2031–2038 (1993).
    [CrossRef] [PubMed]
  12. H. Lotem, Z. Pan, M. Dagenais, “Tunable external cavity diode laser that incorporates a polarization half-wave plate,” Appl. Opt. 31, 7530–7532 (1992).
    [CrossRef] [PubMed]
  13. G. Y. Yan, A. L. Schawlow, “Measurement of diode laser characteristics affecting tunability with an external grating,” J. Opt. Soc. Am. B 9, 2122–2127 (1992).
    [CrossRef]

1993 (2)

1992 (3)

1991 (1)

C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[CrossRef]

1990 (1)

Z. M. Chuang, D. A. Conen, L. A. Coldren, “Tuning characteristics of a tunable-single-frequency external cavity laser,” IEEE J. Quantum Electron. 26, 1200–1205 (1990).
[CrossRef]

1985 (2)

1981 (1)

Asakura, H.

Brownell, M.

T. Day, F. Luecke, M. Brownell, “Continuously tunable diode laser,” Lasers Optronics 12, 15–17 (1993).

Camparo, J. C.

J. C. Camparo, “The diode laser in atomic physics,” Contemp. Phys. 26, 443–477 (1985).
[CrossRef]

Chuang, Z. M.

Z. M. Chuang, D. A. Conen, L. A. Coldren, “Tuning characteristics of a tunable-single-frequency external cavity laser,” IEEE J. Quantum Electron. 26, 1200–1205 (1990).
[CrossRef]

Coldren, L. A.

Z. M. Chuang, D. A. Conen, L. A. Coldren, “Tuning characteristics of a tunable-single-frequency external cavity laser,” IEEE J. Quantum Electron. 26, 1200–1205 (1990).
[CrossRef]

Conen, D. A.

Z. M. Chuang, D. A. Conen, L. A. Coldren, “Tuning characteristics of a tunable-single-frequency external cavity laser,” IEEE J. Quantum Electron. 26, 1200–1205 (1990).
[CrossRef]

Dagenais, M.

Day, T.

T. Day, F. Luecke, M. Brownell, “Continuously tunable diode laser,” Lasers Optronics 12, 15–17 (1993).

Eda, K.

Gibble, K.

K. Gibble, Sloane Physics Laboratory, Yale University, 211 Prospect St., New Haven, Conn. 06511. (personal communication, May1989).

Hagiwara, K.

Hollberg, L.

C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[CrossRef]

Iida, M.

Littman, M. G.

Liu, K.

Lotem, H.

Luecke, F.

T. Day, F. Luecke, M. Brownell, “Continuously tunable diode laser,” Lasers Optronics 12, 15–17 (1993).

McNichol, P.

Metcalf, H. J.

Ohtsu, M.

M. Ohtsu, T. Tako, “Coherence in semiconductor lasers,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1988), Vol. 25, pp. 191–278.
[CrossRef]

Pan, Z.

Schawlow, A. L.

Tako, T.

M. Ohtsu, T. Tako, “Coherence in semiconductor lasers,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1988), Vol. 25, pp. 191–278.
[CrossRef]

Wieman, C. E.

C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[CrossRef]

Yan, G. Y.

Zorabedian, P.

P. Zorabedian, “Characteristics of a grating-external-cavity semiconductor laser containing intracavity prism beam expanders,” J. Lightwave Technol. 10, 330–335 (1992).
[CrossRef]

Appl. Opt. (3)

Contemp. Phys. (1)

J. C. Camparo, “The diode laser in atomic physics,” Contemp. Phys. 26, 443–477 (1985).
[CrossRef]

IEEE J. Quantum Electron. (1)

Z. M. Chuang, D. A. Conen, L. A. Coldren, “Tuning characteristics of a tunable-single-frequency external cavity laser,” IEEE J. Quantum Electron. 26, 1200–1205 (1990).
[CrossRef]

J. Lightwave Technol. (1)

P. Zorabedian, “Characteristics of a grating-external-cavity semiconductor laser containing intracavity prism beam expanders,” J. Lightwave Technol. 10, 330–335 (1992).
[CrossRef]

J. Opt. Soc. Am. B (1)

Lasers Optronics (1)

T. Day, F. Luecke, M. Brownell, “Continuously tunable diode laser,” Lasers Optronics 12, 15–17 (1993).

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[CrossRef]

Other (3)

F. J. Duarte, L. W. Hillman, eds., Dye Laser Principles, (Academic, New York, 1990), pp. 133–183.

M. Ohtsu, T. Tako, “Coherence in semiconductor lasers,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1988), Vol. 25, pp. 191–278.
[CrossRef]

K. Gibble, Sloane Physics Laboratory, Yale University, 211 Prospect St., New Haven, Conn. 06511. (personal communication, May1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the wedge-controlled cavity configuration: α, wedge angle; h, wedge-position parameter; D, wedge–grating distance; ϕ, beam–wedge angle of incidence; ϕ1, ψ, ψ1, refraction φ, full-deflection angle; L1, L2, X, partial lengths; ϴ, beam–grating angle of incidence.

Fig. 2
Fig. 2

Maximum continuous tuning range as a function of the initial beam–wedge angle of incidence, ϕ0. Computations were performed for central wavelength λ0 = 749 mm, wedge angle α = 0.1°, wedge thickness d = 1.1 mm, initial cavity length, L0 = 70 m, angles; wedge–grating distance D = 15 mm, wedge index of refraction n = 1.5, diffraction-grating parameter N = 1200 grooves/mm.

Fig. 3
Fig. 3

Schematic of the experimental configuration used for the wedge-controlled cavity diode laser tunability measurements. The cavity consists of the diode laser chip, collimating lens, tuning wedge, and feedback diffraction grating. The measurements have been performed at a fixed temperature and current. The tuning wedge inside the laser cavity was the only tuning element.

Fig. 4
Fig. 4

Relative detuning δλ/Λ as a function of the wavelength for a fixed optimum initial beam–wedge angle of incidence, ϕ0 = 63.9°. The marked tuning range corresponds to the rotation of the wedge by 1.2°. The laser parameters are the same as in Fig. 2.

Fig. 5
Fig. 5

Maximum tuning range obtained by means of the wedge's thickness variation. Calculations are done for a different given wedge angle α. Relative detuning equal to 0.5 defines a tunability limit. Every point on each curve corresponds to a different (optimized) initial beam–wedge angle of incidence, ϕ0. The laser parameters are the same as in Fig. 2.

Fig. 6
Fig. 6

Laser tuning range as a function of the wedge angle α. Calculations are done for a different given wedge thickness d. Relative detuning equal to 0.5 defines the tunability limit. Every point on each curve corresponds to a different (optimized) initial beam–wedge angle of incidence, ϕ0. The laser parameters are the same as in Fig. 2.

Fig. 7
Fig. 7

Laser tuning range as a function of wedge angle α and thickness d variation. Each point on the surface corresponds to a different (optimized) initial beam–wedge angle of incidence, ϕ0. The laser parameters are the same as in Fig. 2. Angle α is in degrees, and the thickness d is in millimeters.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

δ λ / Λ = δ λ 2 ( L 0 + Δ L ) ( λ CAV ) 2 .
Δ L = L ( ϕ ) L ( ϕ 0 ) ,
λ CAV = λ 0 ( 1 + Δ L L 0 ) ,
λ DG = 2 sin ϴ N × 10 3 ,
δ λ = λ DG λ CAV ,
L = n L 1 + L 2 ,
L 1 = h [ sin ψ cos ψ tan ( ψ α ) ] ,
L 2 = ( X L 1 ) [ cos ( ϕ 1 ψ 1 ) sin ( ϕ 1 ψ 1 ) tan ϴ ] ,
X = D [ cos ( ϕ ψ ) + sin ( ϕ ψ ) × tan ( ϴ 0 ψ + ϕ φ 0 ) ] ,
h = d 2 sin ( α / 2 ) ,
ϴ 0 = arcsin ( λ 0 2 N × 10 3 ) ,
ψ 1 = ψ α ,
sin ϕ = n sin ψ ,
sin ϕ 1 = n sin ψ 1 ,
φ = ϕ ϕ 1 α ,
φ 0 = ϕ 0 ϕ 1 ( ϕ 0 ) α ,
ϴ = ϴ 0 φ 0 + ϕ ϕ 1 α .
Δ λ = ( λ CAV ) max ( λ CAV ) min ,

Metrics