Abstract

When pumped with a 1-W laser diode, a Tm:YVO4 microchip laser produced 150 mW of 1.92-μm output in a near-diffraction-limited beam at room temperature. Using a Ti:Al2O3 laser to pump the same device, we showed that reducing the temperature of the Tm:YVO4 from 20 to −30 °C resulted in no measurable change in threshold and increased the slope efficiency by only 20%.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. E. Storm, W. W. Rohrbach, “Single-longitudinal-mode lasing of Ho:Tm:YAG at 2.091 μm,” Appl. Opt. 28, 4965–4967 (1989).
    [CrossRef] [PubMed]
  2. T. J. Kane, T. S. Kubo, “Diode-pumped single-frequency lasers and Q-switched lasers using Tm:YAG and Tm,Ho:YAG,” in Advanced Solid State Lasers, H. P. Jenssen, G. Dubé, eds., Vol. 6 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 136–139.
  3. J. Harrison, R. J. Martinsen, “Thermal modeling for mode-size estimation in microlasers with application to linear arrays in Nd:YAG and Tm,Ho:YLF,” IEEE J. Quantum Electron.30 (to be published, 1994).
    [CrossRef]
  4. R. C. Stoneman, L. Esterowitz, “Intracavity-pumped 2.09-μm Ho:YAG laser,” Opt. Lett. 17, 736–738 (1992).
    [CrossRef] [PubMed]
  5. H. K. Choi, S. J. Eglash, “High-power multiple-quantum-well GaInAsSb/AlGaAsSb diode lasers emitting at 2.1 μm with low threshold current density,” Appl. Phys. Lett. 61, 1154–1156 (1992).
    [CrossRef]
  6. J. S. Major, D. W. Nam, J. S. Osinski, D. F. Welch, “High-power 2.0 μm InGaAsP laser diodes,” IEEE Photon. Technol. Lett. 5, 594–595 (1993).
    [CrossRef]
  7. C. D. Nabors, J. Ochoa, T. Y. Fan, A. Sanchez, H. Choi, G. Turner, “1.9-μm-diode-laser-pumped, 2.1-μm Ho:YAG laser,” in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washing-ton, D.C., 1994), pp. 172–173.
  8. J. J. Zayhowski, A. Mooradian, “Single-frequency microchip Nd:YAG lasers,” Opt. Lett. 14, 24–26 (1989).
    [CrossRef] [PubMed]
  9. J. J. Zayhowski, A. Mooradian, “Frequency-modulated Nd:YAG microchip lasers,” Opt. Lett. 14, 618–620 (1989).
    [CrossRef] [PubMed]
  10. H. Saito, S. Chaddha, R. S. F. Chang, N. Djeu, “Efficient 1.94-μm Tm3+ laser in YVO4 host,” Opt. Lett. 17, 189–191 (1992).
    [CrossRef] [PubMed]
  11. K. Ohta, H. Saito, M. Ohara, “Spectroscopic characterization of Tm3+:YVO4 crystal as an efficient diode pumped laser source near 2000 nm,” J. Appl. Phys. 73, 3149–3152 (1993).
    [CrossRef]

1993 (2)

J. S. Major, D. W. Nam, J. S. Osinski, D. F. Welch, “High-power 2.0 μm InGaAsP laser diodes,” IEEE Photon. Technol. Lett. 5, 594–595 (1993).
[CrossRef]

K. Ohta, H. Saito, M. Ohara, “Spectroscopic characterization of Tm3+:YVO4 crystal as an efficient diode pumped laser source near 2000 nm,” J. Appl. Phys. 73, 3149–3152 (1993).
[CrossRef]

1992 (3)

H. Saito, S. Chaddha, R. S. F. Chang, N. Djeu, “Efficient 1.94-μm Tm3+ laser in YVO4 host,” Opt. Lett. 17, 189–191 (1992).
[CrossRef] [PubMed]

R. C. Stoneman, L. Esterowitz, “Intracavity-pumped 2.09-μm Ho:YAG laser,” Opt. Lett. 17, 736–738 (1992).
[CrossRef] [PubMed]

H. K. Choi, S. J. Eglash, “High-power multiple-quantum-well GaInAsSb/AlGaAsSb diode lasers emitting at 2.1 μm with low threshold current density,” Appl. Phys. Lett. 61, 1154–1156 (1992).
[CrossRef]

1989 (3)

Chaddha, S.

Chang, R. S. F.

Choi, H.

C. D. Nabors, J. Ochoa, T. Y. Fan, A. Sanchez, H. Choi, G. Turner, “1.9-μm-diode-laser-pumped, 2.1-μm Ho:YAG laser,” in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washing-ton, D.C., 1994), pp. 172–173.

Choi, H. K.

H. K. Choi, S. J. Eglash, “High-power multiple-quantum-well GaInAsSb/AlGaAsSb diode lasers emitting at 2.1 μm with low threshold current density,” Appl. Phys. Lett. 61, 1154–1156 (1992).
[CrossRef]

Djeu, N.

Eglash, S. J.

H. K. Choi, S. J. Eglash, “High-power multiple-quantum-well GaInAsSb/AlGaAsSb diode lasers emitting at 2.1 μm with low threshold current density,” Appl. Phys. Lett. 61, 1154–1156 (1992).
[CrossRef]

Esterowitz, L.

Fan, T. Y.

C. D. Nabors, J. Ochoa, T. Y. Fan, A. Sanchez, H. Choi, G. Turner, “1.9-μm-diode-laser-pumped, 2.1-μm Ho:YAG laser,” in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washing-ton, D.C., 1994), pp. 172–173.

Harrison, J.

J. Harrison, R. J. Martinsen, “Thermal modeling for mode-size estimation in microlasers with application to linear arrays in Nd:YAG and Tm,Ho:YLF,” IEEE J. Quantum Electron.30 (to be published, 1994).
[CrossRef]

Kane, T. J.

T. J. Kane, T. S. Kubo, “Diode-pumped single-frequency lasers and Q-switched lasers using Tm:YAG and Tm,Ho:YAG,” in Advanced Solid State Lasers, H. P. Jenssen, G. Dubé, eds., Vol. 6 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 136–139.

Kubo, T. S.

T. J. Kane, T. S. Kubo, “Diode-pumped single-frequency lasers and Q-switched lasers using Tm:YAG and Tm,Ho:YAG,” in Advanced Solid State Lasers, H. P. Jenssen, G. Dubé, eds., Vol. 6 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 136–139.

Major, J. S.

J. S. Major, D. W. Nam, J. S. Osinski, D. F. Welch, “High-power 2.0 μm InGaAsP laser diodes,” IEEE Photon. Technol. Lett. 5, 594–595 (1993).
[CrossRef]

Martinsen, R. J.

J. Harrison, R. J. Martinsen, “Thermal modeling for mode-size estimation in microlasers with application to linear arrays in Nd:YAG and Tm,Ho:YLF,” IEEE J. Quantum Electron.30 (to be published, 1994).
[CrossRef]

Mooradian, A.

Nabors, C. D.

C. D. Nabors, J. Ochoa, T. Y. Fan, A. Sanchez, H. Choi, G. Turner, “1.9-μm-diode-laser-pumped, 2.1-μm Ho:YAG laser,” in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washing-ton, D.C., 1994), pp. 172–173.

Nam, D. W.

J. S. Major, D. W. Nam, J. S. Osinski, D. F. Welch, “High-power 2.0 μm InGaAsP laser diodes,” IEEE Photon. Technol. Lett. 5, 594–595 (1993).
[CrossRef]

Ochoa, J.

C. D. Nabors, J. Ochoa, T. Y. Fan, A. Sanchez, H. Choi, G. Turner, “1.9-μm-diode-laser-pumped, 2.1-μm Ho:YAG laser,” in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washing-ton, D.C., 1994), pp. 172–173.

Ohara, M.

K. Ohta, H. Saito, M. Ohara, “Spectroscopic characterization of Tm3+:YVO4 crystal as an efficient diode pumped laser source near 2000 nm,” J. Appl. Phys. 73, 3149–3152 (1993).
[CrossRef]

Ohta, K.

K. Ohta, H. Saito, M. Ohara, “Spectroscopic characterization of Tm3+:YVO4 crystal as an efficient diode pumped laser source near 2000 nm,” J. Appl. Phys. 73, 3149–3152 (1993).
[CrossRef]

Osinski, J. S.

J. S. Major, D. W. Nam, J. S. Osinski, D. F. Welch, “High-power 2.0 μm InGaAsP laser diodes,” IEEE Photon. Technol. Lett. 5, 594–595 (1993).
[CrossRef]

Rohrbach, W. W.

Saito, H.

K. Ohta, H. Saito, M. Ohara, “Spectroscopic characterization of Tm3+:YVO4 crystal as an efficient diode pumped laser source near 2000 nm,” J. Appl. Phys. 73, 3149–3152 (1993).
[CrossRef]

H. Saito, S. Chaddha, R. S. F. Chang, N. Djeu, “Efficient 1.94-μm Tm3+ laser in YVO4 host,” Opt. Lett. 17, 189–191 (1992).
[CrossRef] [PubMed]

Sanchez, A.

C. D. Nabors, J. Ochoa, T. Y. Fan, A. Sanchez, H. Choi, G. Turner, “1.9-μm-diode-laser-pumped, 2.1-μm Ho:YAG laser,” in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washing-ton, D.C., 1994), pp. 172–173.

Stoneman, R. C.

Storm, M. E.

Turner, G.

C. D. Nabors, J. Ochoa, T. Y. Fan, A. Sanchez, H. Choi, G. Turner, “1.9-μm-diode-laser-pumped, 2.1-μm Ho:YAG laser,” in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washing-ton, D.C., 1994), pp. 172–173.

Welch, D. F.

J. S. Major, D. W. Nam, J. S. Osinski, D. F. Welch, “High-power 2.0 μm InGaAsP laser diodes,” IEEE Photon. Technol. Lett. 5, 594–595 (1993).
[CrossRef]

Zayhowski, J. J.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. K. Choi, S. J. Eglash, “High-power multiple-quantum-well GaInAsSb/AlGaAsSb diode lasers emitting at 2.1 μm with low threshold current density,” Appl. Phys. Lett. 61, 1154–1156 (1992).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. S. Major, D. W. Nam, J. S. Osinski, D. F. Welch, “High-power 2.0 μm InGaAsP laser diodes,” IEEE Photon. Technol. Lett. 5, 594–595 (1993).
[CrossRef]

J. Appl. Phys. (1)

K. Ohta, H. Saito, M. Ohara, “Spectroscopic characterization of Tm3+:YVO4 crystal as an efficient diode pumped laser source near 2000 nm,” J. Appl. Phys. 73, 3149–3152 (1993).
[CrossRef]

Opt. Lett. (4)

Other (3)

C. D. Nabors, J. Ochoa, T. Y. Fan, A. Sanchez, H. Choi, G. Turner, “1.9-μm-diode-laser-pumped, 2.1-μm Ho:YAG laser,” in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washing-ton, D.C., 1994), pp. 172–173.

T. J. Kane, T. S. Kubo, “Diode-pumped single-frequency lasers and Q-switched lasers using Tm:YAG and Tm,Ho:YAG,” in Advanced Solid State Lasers, H. P. Jenssen, G. Dubé, eds., Vol. 6 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 136–139.

J. Harrison, R. J. Martinsen, “Thermal modeling for mode-size estimation in microlasers with application to linear arrays in Nd:YAG and Tm,Ho:YLF,” IEEE J. Quantum Electron.30 (to be published, 1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Polarization-resolved absorption spectra of Tm:YVO4 with a Tm concentration of 5 at. %.

Fig. 2
Fig. 2

Polarization-resolved fluorescence spectra of Tm:YVO4 with a Tm concentration of 5 at. %.

Fig. 3
Fig. 3

(a) Absorption spectrum of Ho:YAG doped at 4 at. %. (b) Emission spectrum of the diode-pumped Tm:YVO4 microchip laser (comb-toothed spectrum) superimposed on the absorption spectrum of Ho:YAG.

Fig. 4
Fig. 4

Dependence of the Tm:YVO4 microchip laser output power on the incident pump power.

Metrics