Abstract

An electrical equalizer for a superresolution readout system with an optical apodizer is proposed and verified experimentally. This superresolution readout system uses a five-tap transversal filter as the electrical equalizer instead of additional optics to suppress enlarged sidelobes, and it achieves higher resolution than the diffraction-limited system. The transfer function of the electrical equalizer is also derived theoretically. This approach allows fabrication of a readout system with a good signal-to-noise ratio and a compact head.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Yamanaka, Y. Hirose, H. Fujii, K. Kubota, “High-density recording by superresolution in an optical-disk memory system,” Appl. Opt. 29, 3046–3051 (1990).
    [CrossRef] [PubMed]
  2. T. Milster, M. Wang, W. Li, E. Walker, “Optical filtering in the collection path of a data storage device,” Jpn. J. Appl. Phys. 32, 5397–5401 (1993).
    [CrossRef]
  3. T. Suhara, H. Nishihara, “Theoretical analysis of superresolution readout of disk data by semiconfocal pickup heads,” Jpn. J. Appl. Phys. 31, 534–541 (1992).
    [CrossRef]
  4. H. Ooki, R. Arimoto, Y. Iwasaki, J. Iwasaki, “A novel superresolution technique for high-density optical data storage using mode interference in channel waveguides,” Jpn. J. Appl. Phys. 32, 1668–1671 (1993).
    [CrossRef]
  5. M. Kaneko, K. Aratani, A. Fukumoto, S. Miyaoka, “IRISTER-magneto-optical disk for magnetically induced superresolution,” Proc. IEEE 82, 544–553 (1994).
    [CrossRef]
  6. T. Milster, C. Curtis, “Analysis of superresolution in magneto-optic data storage devices,” Appl. Opt. 31, 6272–6279 (1992).
    [CrossRef] [PubMed]
  7. T. Furukawa, K. Nakane, K. Tanaka, M. Nakada, “An evaluation of the reproducing methods on optical digital disk,” Jpn. J. Appl. Phys. Suppl. 26-4, 199–202 (1987).
  8. T. Tanabe, N. Amano, R. Arai, “Superresolving readout system using optical apodization and electrical equalization,” in Optical Data Storage, Vol. 10 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 132–133.
  9. G. O. Reynolds, J. B. DeVelis, G. B. Parrent, B. J. Thompson, The New Physical Optics Notebook: Tutorials in Fourier Optics (American Institute of Physics, New York, 1989), Chap. 2, pp. 8–13.
    [CrossRef]
  10. M. Miyagi, H. Yamazaki, R. Chiba, N. Funakoshi, “Optical-disk media fabrication for high data-transfer rate,” Appl. Opt. 33, 3094–3098 (1994).
    [CrossRef] [PubMed]

1994

M. Kaneko, K. Aratani, A. Fukumoto, S. Miyaoka, “IRISTER-magneto-optical disk for magnetically induced superresolution,” Proc. IEEE 82, 544–553 (1994).
[CrossRef]

M. Miyagi, H. Yamazaki, R. Chiba, N. Funakoshi, “Optical-disk media fabrication for high data-transfer rate,” Appl. Opt. 33, 3094–3098 (1994).
[CrossRef] [PubMed]

1993

T. Milster, M. Wang, W. Li, E. Walker, “Optical filtering in the collection path of a data storage device,” Jpn. J. Appl. Phys. 32, 5397–5401 (1993).
[CrossRef]

H. Ooki, R. Arimoto, Y. Iwasaki, J. Iwasaki, “A novel superresolution technique for high-density optical data storage using mode interference in channel waveguides,” Jpn. J. Appl. Phys. 32, 1668–1671 (1993).
[CrossRef]

1992

T. Suhara, H. Nishihara, “Theoretical analysis of superresolution readout of disk data by semiconfocal pickup heads,” Jpn. J. Appl. Phys. 31, 534–541 (1992).
[CrossRef]

T. Milster, C. Curtis, “Analysis of superresolution in magneto-optic data storage devices,” Appl. Opt. 31, 6272–6279 (1992).
[CrossRef] [PubMed]

1990

1987

T. Furukawa, K. Nakane, K. Tanaka, M. Nakada, “An evaluation of the reproducing methods on optical digital disk,” Jpn. J. Appl. Phys. Suppl. 26-4, 199–202 (1987).

Amano, N.

T. Tanabe, N. Amano, R. Arai, “Superresolving readout system using optical apodization and electrical equalization,” in Optical Data Storage, Vol. 10 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 132–133.

Arai, R.

T. Tanabe, N. Amano, R. Arai, “Superresolving readout system using optical apodization and electrical equalization,” in Optical Data Storage, Vol. 10 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 132–133.

Aratani, K.

M. Kaneko, K. Aratani, A. Fukumoto, S. Miyaoka, “IRISTER-magneto-optical disk for magnetically induced superresolution,” Proc. IEEE 82, 544–553 (1994).
[CrossRef]

Arimoto, R.

H. Ooki, R. Arimoto, Y. Iwasaki, J. Iwasaki, “A novel superresolution technique for high-density optical data storage using mode interference in channel waveguides,” Jpn. J. Appl. Phys. 32, 1668–1671 (1993).
[CrossRef]

Chiba, R.

Curtis, C.

DeVelis, J. B.

G. O. Reynolds, J. B. DeVelis, G. B. Parrent, B. J. Thompson, The New Physical Optics Notebook: Tutorials in Fourier Optics (American Institute of Physics, New York, 1989), Chap. 2, pp. 8–13.
[CrossRef]

Fujii, H.

Fukumoto, A.

M. Kaneko, K. Aratani, A. Fukumoto, S. Miyaoka, “IRISTER-magneto-optical disk for magnetically induced superresolution,” Proc. IEEE 82, 544–553 (1994).
[CrossRef]

Funakoshi, N.

Furukawa, T.

T. Furukawa, K. Nakane, K. Tanaka, M. Nakada, “An evaluation of the reproducing methods on optical digital disk,” Jpn. J. Appl. Phys. Suppl. 26-4, 199–202 (1987).

Hirose, Y.

Iwasaki, J.

H. Ooki, R. Arimoto, Y. Iwasaki, J. Iwasaki, “A novel superresolution technique for high-density optical data storage using mode interference in channel waveguides,” Jpn. J. Appl. Phys. 32, 1668–1671 (1993).
[CrossRef]

Iwasaki, Y.

H. Ooki, R. Arimoto, Y. Iwasaki, J. Iwasaki, “A novel superresolution technique for high-density optical data storage using mode interference in channel waveguides,” Jpn. J. Appl. Phys. 32, 1668–1671 (1993).
[CrossRef]

Kaneko, M.

M. Kaneko, K. Aratani, A. Fukumoto, S. Miyaoka, “IRISTER-magneto-optical disk for magnetically induced superresolution,” Proc. IEEE 82, 544–553 (1994).
[CrossRef]

Kubota, K.

Li, W.

T. Milster, M. Wang, W. Li, E. Walker, “Optical filtering in the collection path of a data storage device,” Jpn. J. Appl. Phys. 32, 5397–5401 (1993).
[CrossRef]

Milster, T.

T. Milster, M. Wang, W. Li, E. Walker, “Optical filtering in the collection path of a data storage device,” Jpn. J. Appl. Phys. 32, 5397–5401 (1993).
[CrossRef]

T. Milster, C. Curtis, “Analysis of superresolution in magneto-optic data storage devices,” Appl. Opt. 31, 6272–6279 (1992).
[CrossRef] [PubMed]

Miyagi, M.

Miyaoka, S.

M. Kaneko, K. Aratani, A. Fukumoto, S. Miyaoka, “IRISTER-magneto-optical disk for magnetically induced superresolution,” Proc. IEEE 82, 544–553 (1994).
[CrossRef]

Nakada, M.

T. Furukawa, K. Nakane, K. Tanaka, M. Nakada, “An evaluation of the reproducing methods on optical digital disk,” Jpn. J. Appl. Phys. Suppl. 26-4, 199–202 (1987).

Nakane, K.

T. Furukawa, K. Nakane, K. Tanaka, M. Nakada, “An evaluation of the reproducing methods on optical digital disk,” Jpn. J. Appl. Phys. Suppl. 26-4, 199–202 (1987).

Nishihara, H.

T. Suhara, H. Nishihara, “Theoretical analysis of superresolution readout of disk data by semiconfocal pickup heads,” Jpn. J. Appl. Phys. 31, 534–541 (1992).
[CrossRef]

Ooki, H.

H. Ooki, R. Arimoto, Y. Iwasaki, J. Iwasaki, “A novel superresolution technique for high-density optical data storage using mode interference in channel waveguides,” Jpn. J. Appl. Phys. 32, 1668–1671 (1993).
[CrossRef]

Parrent, G. B.

G. O. Reynolds, J. B. DeVelis, G. B. Parrent, B. J. Thompson, The New Physical Optics Notebook: Tutorials in Fourier Optics (American Institute of Physics, New York, 1989), Chap. 2, pp. 8–13.
[CrossRef]

Reynolds, G. O.

G. O. Reynolds, J. B. DeVelis, G. B. Parrent, B. J. Thompson, The New Physical Optics Notebook: Tutorials in Fourier Optics (American Institute of Physics, New York, 1989), Chap. 2, pp. 8–13.
[CrossRef]

Suhara, T.

T. Suhara, H. Nishihara, “Theoretical analysis of superresolution readout of disk data by semiconfocal pickup heads,” Jpn. J. Appl. Phys. 31, 534–541 (1992).
[CrossRef]

Tanabe, T.

T. Tanabe, N. Amano, R. Arai, “Superresolving readout system using optical apodization and electrical equalization,” in Optical Data Storage, Vol. 10 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 132–133.

Tanaka, K.

T. Furukawa, K. Nakane, K. Tanaka, M. Nakada, “An evaluation of the reproducing methods on optical digital disk,” Jpn. J. Appl. Phys. Suppl. 26-4, 199–202 (1987).

Thompson, B. J.

G. O. Reynolds, J. B. DeVelis, G. B. Parrent, B. J. Thompson, The New Physical Optics Notebook: Tutorials in Fourier Optics (American Institute of Physics, New York, 1989), Chap. 2, pp. 8–13.
[CrossRef]

Walker, E.

T. Milster, M. Wang, W. Li, E. Walker, “Optical filtering in the collection path of a data storage device,” Jpn. J. Appl. Phys. 32, 5397–5401 (1993).
[CrossRef]

Wang, M.

T. Milster, M. Wang, W. Li, E. Walker, “Optical filtering in the collection path of a data storage device,” Jpn. J. Appl. Phys. 32, 5397–5401 (1993).
[CrossRef]

Yamanaka, Y.

Yamazaki, H.

Appl. Opt.

Jpn. J. Appl. Phys.

T. Milster, M. Wang, W. Li, E. Walker, “Optical filtering in the collection path of a data storage device,” Jpn. J. Appl. Phys. 32, 5397–5401 (1993).
[CrossRef]

T. Suhara, H. Nishihara, “Theoretical analysis of superresolution readout of disk data by semiconfocal pickup heads,” Jpn. J. Appl. Phys. 31, 534–541 (1992).
[CrossRef]

H. Ooki, R. Arimoto, Y. Iwasaki, J. Iwasaki, “A novel superresolution technique for high-density optical data storage using mode interference in channel waveguides,” Jpn. J. Appl. Phys. 32, 1668–1671 (1993).
[CrossRef]

Jpn. J. Appl. Phys. Suppl.

T. Furukawa, K. Nakane, K. Tanaka, M. Nakada, “An evaluation of the reproducing methods on optical digital disk,” Jpn. J. Appl. Phys. Suppl. 26-4, 199–202 (1987).

Proc. IEEE

M. Kaneko, K. Aratani, A. Fukumoto, S. Miyaoka, “IRISTER-magneto-optical disk for magnetically induced superresolution,” Proc. IEEE 82, 544–553 (1994).
[CrossRef]

Other

T. Tanabe, N. Amano, R. Arai, “Superresolving readout system using optical apodization and electrical equalization,” in Optical Data Storage, Vol. 10 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 132–133.

G. O. Reynolds, J. B. DeVelis, G. B. Parrent, B. J. Thompson, The New Physical Optics Notebook: Tutorials in Fourier Optics (American Institute of Physics, New York, 1989), Chap. 2, pp. 8–13.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Proposed superresolution readout system.

Fig. 2
Fig. 2

Transfer function for superresolution readout system.

Fig. 3
Fig. 3

Main spot and sidelobe widths and sidelobe amplitude versus shading-band width.

Fig. 4
Fig. 4

Equalizer structure for canceling the effect of sidelobes.

Fig. 5
Fig. 5

Transfer functions for high-resolution readout system: (a) time-domain responses and (b) frequency-domain responses.

Fig. 6
Fig. 6

Equalizer structure for suppressing the sidelobes and for obtaining higher resolution.

Fig. 7
Fig. 7

Waveforms in each part of the equalizer: (a) input waveform, (b) compensation waveform, and (c) output waveform of (a) plus (b).

Fig. 8
Fig. 8

Readout waveforms from an isolated recorded mark: (a) conventional head, (b) superresolution head, and (c) superresolution head plus equalizer.

Fig. 9
Fig. 9

Readout waveforms from long recorded marks: (a) conventional head, (b) superresolution head, and (c) superresolution head plus equalizer.

Fig. 10
Fig. 10

Relationship between the readout waveform width and the equalizer coefficient.

Fig. 11
Fig. 11

Readout amplitude versus linear recording density obtained by pit-position recording methods.

Fig. 12
Fig. 12

Signal-to-noise ratio versus linear recording density obtained by pulse-width-modulation recording methods.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

i ( t ) = i 1 ( t ) + i 0 ( t ) + i 1 ( t ) = i 0 ( t ) + K 0 [ i 0 ( t + T ) + i 0 ( t T ) ] ,
I ( ω ) = I 0 ( ω ) + K 0 [ I 0 ( ω ) exp ( j ω T ) + I 0 ( ω ) exp ( j ω T ) ] = I 0 ( ω ) [ 1 + 2 K 0 cos ( ω T ) ] .
H 1 ( ω ) = I 0 ( ω ) I ( ω ) = 1 1 + 2 K 0 cos ( ω T ) 1 2 K 0 cos ( ω T ) ,
R ( ω ) = A exp [ ( W 1 2 ) 2 8 υ 2 ω 2 ] ,
I ( ω ) = A exp [ ( W 2 2 ) 2 8 υ 2 ω 2 ] ,
H 2 ( ω ) = I ( ω ) R ( ω ) 1 1 3 2 K 1 [ 1 2 K 1 cos ( ω T 2 ) + K 1 2 cos ( ω T ) ] ,
K 1 = 2 απ 2 3 απ 2 + 2 T 2 ,
α = ( W 1 2 ) 2 ( W 2 2 ) 2 8 υ 2 .
H ( ω ) 1 1 3 2 K 1 [ 1 2 K 1 cos ( ω T 2 ) 2 ( K 0 K 1 4 ) cos ( ω T ) ] .
C 1 = C 1 = K 1 ,
C 2 = C 2 = K 0 + K 1 4 .
H 2 ( ω ) = I ( ω ) R ( ω ) = exp ( αω 2 ) ,
α = ( W 1 2 ) 2 ( W 2 2 ) 2 8 υ 2 .
H 2 ( ω ) 1 + αω 2 .
H 21 ( ω ) = 1 1 2 K 1 + 2 K 2 [ 1 2 K 1 cos ( ω T 2 ) + 2 K 2 cos ( ω T ) ] .
K 1 = 2 απ 2 3 απ 2 + 2 T 2 ,
K 2 = K 1 4 .

Metrics