Abstract

Volume holographic gratings are written with ultraviolet light in high-optical-quality, commercially available Ge-doped silica films and in Ge-doped optical-fiber preform sections loaded with molecular hydrogen. In the film samples, peak refractive-index changes exceeding 10−2 and a sensitivity (index change/absorbed energy density) of 0.4 × 10−7 cm3/J are measured. Angular multiplexing of up to 51 gratings is demonstrated in the preform samples.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Partovi, T. Erdogan, V. Mizrahi, P. J. Lemaire, A. M. Glass, J. W. Fleming, “Volume holographic storage in hydrogen treated germano-silicate glass,” Appl. Phys. Lett. 64, 821–823 (1994).
    [CrossRef]
  2. P. J. Lemaire, R. M. Atkins, V. Mizrahi, W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers,” Electron. Lett. 29, 1191–1192 (1993).
    [CrossRef]
  3. Photonic Integration Research, Inc., Columbus, Ohio.
  4. N. Uchida, “Calculation of diffraction efficiency in hologram gratings attenuated along the direction perpendicular to the grating vector,” J. Opt. Soc. Am. 63, 280–287 (1973).
    [CrossRef]
  5. L. Dong, J. Pinkstone, P. St. J. Russell, D. N. Payne, “Study of UV absorption in germanosilicate fiber preforms,” in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 243.
  6. R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), Eq. 16.12.
  7. Ref. 6, Eqs. 9.79–9.80, 16.10.
  8. M. H. Garrett, J. Y. Chang, H. P. Jenssen, C. Warde, “High photorefractive sensitivity in an n-type 45°-cut BaTiO3 crystal,” Opt. Lett. 17, 103–105 (1992).
    [CrossRef] [PubMed]
  9. R. A. Vazquez, F. R. Vachss, R. R. Neurgaonkar, M. D. Ewbank, “Large photorefractive coupling coefficient in a thin cerium-doped strontium barium niobate crystal,” J. Opt. Soc. Am. B 8, 1932–1941 (1991).
    [CrossRef]
  10. W. J. Gambogi, A. M. Weber, T. J. Trout, “Advances and applications of DuPont holographic photopolymers,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2043, 2–13 (1993).
  11. D. Psaltis, F. Mok, H.-Y. S. Li, “Nonvolatile storage in photorefractive crystals,” Opt. Lett. 19, 210–212 (1994).
    [CrossRef] [PubMed]

1994 (2)

A. Partovi, T. Erdogan, V. Mizrahi, P. J. Lemaire, A. M. Glass, J. W. Fleming, “Volume holographic storage in hydrogen treated germano-silicate glass,” Appl. Phys. Lett. 64, 821–823 (1994).
[CrossRef]

D. Psaltis, F. Mok, H.-Y. S. Li, “Nonvolatile storage in photorefractive crystals,” Opt. Lett. 19, 210–212 (1994).
[CrossRef] [PubMed]

1993 (1)

P. J. Lemaire, R. M. Atkins, V. Mizrahi, W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers,” Electron. Lett. 29, 1191–1192 (1993).
[CrossRef]

1992 (1)

1991 (1)

1973 (1)

Atkins, R. M.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers,” Electron. Lett. 29, 1191–1192 (1993).
[CrossRef]

Burckhardt, C. B.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), Eq. 16.12.

Chang, J. Y.

Collier, R. J.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), Eq. 16.12.

Dong, L.

L. Dong, J. Pinkstone, P. St. J. Russell, D. N. Payne, “Study of UV absorption in germanosilicate fiber preforms,” in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 243.

Erdogan, T.

A. Partovi, T. Erdogan, V. Mizrahi, P. J. Lemaire, A. M. Glass, J. W. Fleming, “Volume holographic storage in hydrogen treated germano-silicate glass,” Appl. Phys. Lett. 64, 821–823 (1994).
[CrossRef]

Ewbank, M. D.

Fleming, J. W.

A. Partovi, T. Erdogan, V. Mizrahi, P. J. Lemaire, A. M. Glass, J. W. Fleming, “Volume holographic storage in hydrogen treated germano-silicate glass,” Appl. Phys. Lett. 64, 821–823 (1994).
[CrossRef]

Gambogi, W. J.

W. J. Gambogi, A. M. Weber, T. J. Trout, “Advances and applications of DuPont holographic photopolymers,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2043, 2–13 (1993).

Garrett, M. H.

Glass, A. M.

A. Partovi, T. Erdogan, V. Mizrahi, P. J. Lemaire, A. M. Glass, J. W. Fleming, “Volume holographic storage in hydrogen treated germano-silicate glass,” Appl. Phys. Lett. 64, 821–823 (1994).
[CrossRef]

Jenssen, H. P.

Lemaire, P. J.

A. Partovi, T. Erdogan, V. Mizrahi, P. J. Lemaire, A. M. Glass, J. W. Fleming, “Volume holographic storage in hydrogen treated germano-silicate glass,” Appl. Phys. Lett. 64, 821–823 (1994).
[CrossRef]

P. J. Lemaire, R. M. Atkins, V. Mizrahi, W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers,” Electron. Lett. 29, 1191–1192 (1993).
[CrossRef]

Li, H.-Y. S.

Lin, L. H.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), Eq. 16.12.

Mizrahi, V.

A. Partovi, T. Erdogan, V. Mizrahi, P. J. Lemaire, A. M. Glass, J. W. Fleming, “Volume holographic storage in hydrogen treated germano-silicate glass,” Appl. Phys. Lett. 64, 821–823 (1994).
[CrossRef]

P. J. Lemaire, R. M. Atkins, V. Mizrahi, W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers,” Electron. Lett. 29, 1191–1192 (1993).
[CrossRef]

Mok, F.

Neurgaonkar, R. R.

Partovi, A.

A. Partovi, T. Erdogan, V. Mizrahi, P. J. Lemaire, A. M. Glass, J. W. Fleming, “Volume holographic storage in hydrogen treated germano-silicate glass,” Appl. Phys. Lett. 64, 821–823 (1994).
[CrossRef]

Payne, D. N.

L. Dong, J. Pinkstone, P. St. J. Russell, D. N. Payne, “Study of UV absorption in germanosilicate fiber preforms,” in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 243.

Pinkstone, J.

L. Dong, J. Pinkstone, P. St. J. Russell, D. N. Payne, “Study of UV absorption in germanosilicate fiber preforms,” in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 243.

Psaltis, D.

Reed, W. A.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers,” Electron. Lett. 29, 1191–1192 (1993).
[CrossRef]

Russell, P. St. J.

L. Dong, J. Pinkstone, P. St. J. Russell, D. N. Payne, “Study of UV absorption in germanosilicate fiber preforms,” in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 243.

Trout, T. J.

W. J. Gambogi, A. M. Weber, T. J. Trout, “Advances and applications of DuPont holographic photopolymers,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2043, 2–13 (1993).

Uchida, N.

Vachss, F. R.

Vazquez, R. A.

Warde, C.

Weber, A. M.

W. J. Gambogi, A. M. Weber, T. J. Trout, “Advances and applications of DuPont holographic photopolymers,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2043, 2–13 (1993).

Appl. Phys. Lett. (1)

A. Partovi, T. Erdogan, V. Mizrahi, P. J. Lemaire, A. M. Glass, J. W. Fleming, “Volume holographic storage in hydrogen treated germano-silicate glass,” Appl. Phys. Lett. 64, 821–823 (1994).
[CrossRef]

Electron. Lett. (1)

P. J. Lemaire, R. M. Atkins, V. Mizrahi, W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers,” Electron. Lett. 29, 1191–1192 (1993).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Other (5)

W. J. Gambogi, A. M. Weber, T. J. Trout, “Advances and applications of DuPont holographic photopolymers,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2043, 2–13 (1993).

Photonic Integration Research, Inc., Columbus, Ohio.

L. Dong, J. Pinkstone, P. St. J. Russell, D. N. Payne, “Study of UV absorption in germanosilicate fiber preforms,” in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 243.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), Eq. 16.12.

Ref. 6, Eqs. 9.79–9.80, 16.10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Buildup of (a) the diffraction efficiency η of a He–Ne laser beam and (b) the uv-induced refractive-index change δn p-p versus the uv exposure time for gratings written in silica-on-sapphire samples. Plots are for uv intensity values of 3.9 W/cm2 (solid), 2.9 W/cm2 (dash), 1.9 W/cm2 (dash-dot), 0.97 W/cm2 (dash-dot-dot), and 0.49 W/cm2 (dot). Inset to (a) shows the measured (solid) and the calculated (dot) angular Bragg selectivity of a grating written with 3.9 W/cm2.

Fig. 2
Fig. 2

Refractive-index growth rate versus write intensity obtained from linear fits to the curves in Fig. 1(b). The solid linear is a linear fit to the data, and the dashed curve is a fit to a saturating exponential function.

Fig. 3
Fig. 3

Buildup of the diffraction efficiency versus the uv exposure time for a grating written in an optical fiber preform section with an intensity of 1.9 W/cm2. Inset shows the measured (solid) and the calculated (dot) angular Bragg selectivity of this grating.

Fig. 4
Fig. 4

Angular dependence of diffraction efficiency for (a) five gratings and (b) 51 gratings multiplexed in an optical fiber preform sample.

Fig. 5
Fig. 5

(a) Estimated maximum number of holograms that can be multiplexed in a given location versus Ge-doping concentration, as limited both by angular bandwidth and recording range, for three values of diffraction efficiency per hologram. A write wavelength of 0.242 μm is assumed. (b) Estimated optimum diffraction efficiency versus optimum Ge-doping concentration (solid) and corresponding maximum number of holograms (dash).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n ( x , z ) = n 0 + δ n sin ( 2 π x Λ g ) exp ( α g z ) , 0 z d ,
N AB = Ω n 0 sin θ 0 T λ ,
N DR = π Δ n T 2 λ cos θ 0 η ,

Metrics