Abstract

A new method for the preparation of stratified light-sensitive film is developed, and the stratified gratings (SG’s) are recorded in the film. The sensitive layers on both sides of a dichromated cellulose triacetate film are produced simultaneously through chemical reaction and not with the conventional coating technique. Compared with SG’s in other materials made with coating techniques, double-layer SG’s in the film have, to my knowledge, the highest experimental diffraction efficiency (~54%) in addition to their having a simple recording optical system. The diffraction efficiency and the periodic Bragg selectivity of the SH in the film is given. Based on the SG’s of the film, several beam splitters with 2, 3, 4, or 7 fan-outs and higher than 80% total diffraction efficiencies are realized experimentally. The advantages of this method as compared with others, such as the method based on volume holographic beam splitters, are explained.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Ya. Zel’dovich, D. I. Mirovitskii, N. V. Rostovtseva, O. B. Serov, “Characteristics of two-layer phase holograms,” Sov. J. Quantum Electron. 14, 364–369 (1984).
    [CrossRef]
  2. R. V. Johnson, A. R. Tanguay, “Stratified volume holographic optical elements,” Opt. Lett. 13, 189–191 (1988).
    [CrossRef] [PubMed]
  3. G. P. Nordin, R. V. Johnson, A. R. Tanguay, “Diffraction properties of stratified volume holographic optical elements,” J. Opt. Soc. Am. A 9, 2206–2217 (1992).
    [CrossRef]
  4. A. Granger, L. Song, R. A. Lessard, “Multiple beam generation using a stratified volume holographic grating,” Appl. Opt. 32, 2534–2537 (1993).
    [CrossRef] [PubMed]
  5. J. T. Sheridan, “Stacked volume holographic gratings: part I, transmission gratings in series,” Optik 95, 73–80 (1993).
  6. R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971).
  7. H. Dammann, K. Gortler, “High-efficiency in-line multiple imaging by means of multiple phase holograms,” Opt. Commun. 3, 312–315 (1971).
    [CrossRef]
  8. H. Kobolla, J. Schmidt, J. T. Sheridan, N. Streibl, R. Volkel, “Holographic optical beam splitters in dichromated gelatin,” J. Mod. Opt. 39, 881–887 (1992).
    [CrossRef]
  9. P. S. Cawte, “The diffraction efficiency of multiple grating holographic fan-out elements,” in Holographics International ’92, Y. N. Denisyuk, F. Wybrowski, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1732, 36–47 (1992).
  10. K. P. Wang, Q. R. Chen, L. R. Guo, “A new holographic recording material: dichromated cellulose triacetate,” Acta Opt. Sinica 13, 924–928 (1993).
  11. W. Dong, Y. Liu, J. Fan, J. Li, Chemistry for Making Lithographic Plates (Printing Industry Press, Beijing, 1987).
  12. K. P. Wang, L. R. Guo, Q. R. Chen, “Red sensitivity of dichromated cellulose triacetate as a holographic recording material,” Opt. Lett. 19, 1240–1242 (1994).
    [CrossRef] [PubMed]
  13. L. Solymar, D. J. Cooke, Volume Holography and Volume Gratings (Academic, New York, 1981).
  14. D. Z. Anderson, D. M. Lininger, “Dynamic optical interconnects: volume holograms as optical two-port operators,” Appl. Opt. 26, 5031–5038 (1987).
    [CrossRef] [PubMed]
  15. D. Psaltis, D. J. Brady, K. Wagner, “Adaptive optical networks using photorefractive crystals,” Appl. Opt. 27, 1752–1758 (1988).
    [CrossRef]
  16. N. Streibl, “Beam shaping with optical array generators,” J. Mod. Opt. 36, 1559–1573 (1989).
    [CrossRef]
  17. J. W. Lewis, L. Solymar, “Spurious waves in thick phase gratings,” Opt. Commun. 47, 23–26 (1983).
    [CrossRef]
  18. L. Song, R. A. Lessard, “Diffraction efficiency of a thin amplitude–phase holographic grating: a convolution approach,” J. Mod. Opt. 37, 1319–1328 (1990).
    [CrossRef]
  19. I. Pascual, A. Belendez, A. Fimia, “Holographic system for copying holograms by using partially coherent light,” Appl. Opt. 31, 3312–3319 (1992).
    [CrossRef] [PubMed]
  20. L. Zhou, L. R. Guo, K. P. Wang, “The photochemical etching property of photosensitive cellulose triacetate,” Opto-Electron. Eng. 21, 48–51 (1994).
  21. K. P. Wang, L. R. Guo, Q. R. Chen, “Nogelatin dichromated holographic recording material and its real time property,” Acta Opt. Sinica 11, 956–958 (1991).
  22. K. P. Wang, Q. R. Chen, L. R. Guo, “Influence of electron donors on the real-time diffraction efficiency of NGD holograms,” in Holographics International ’92, Y. N. Denisyuk, F. Wybrowski, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1732, 601–605 (1992).
  23. Q. R. Chen, K. P. Wang, L. R. Guo, “Real time diffraction efficiency and the anti-humidity mechanism of NGD holograms,” Sci. Sinica A 37, 221–226 (1994).

1994 (3)

K. P. Wang, L. R. Guo, Q. R. Chen, “Red sensitivity of dichromated cellulose triacetate as a holographic recording material,” Opt. Lett. 19, 1240–1242 (1994).
[CrossRef] [PubMed]

L. Zhou, L. R. Guo, K. P. Wang, “The photochemical etching property of photosensitive cellulose triacetate,” Opto-Electron. Eng. 21, 48–51 (1994).

Q. R. Chen, K. P. Wang, L. R. Guo, “Real time diffraction efficiency and the anti-humidity mechanism of NGD holograms,” Sci. Sinica A 37, 221–226 (1994).

1993 (3)

K. P. Wang, Q. R. Chen, L. R. Guo, “A new holographic recording material: dichromated cellulose triacetate,” Acta Opt. Sinica 13, 924–928 (1993).

A. Granger, L. Song, R. A. Lessard, “Multiple beam generation using a stratified volume holographic grating,” Appl. Opt. 32, 2534–2537 (1993).
[CrossRef] [PubMed]

J. T. Sheridan, “Stacked volume holographic gratings: part I, transmission gratings in series,” Optik 95, 73–80 (1993).

1992 (3)

1991 (1)

K. P. Wang, L. R. Guo, Q. R. Chen, “Nogelatin dichromated holographic recording material and its real time property,” Acta Opt. Sinica 11, 956–958 (1991).

1990 (1)

L. Song, R. A. Lessard, “Diffraction efficiency of a thin amplitude–phase holographic grating: a convolution approach,” J. Mod. Opt. 37, 1319–1328 (1990).
[CrossRef]

1989 (1)

N. Streibl, “Beam shaping with optical array generators,” J. Mod. Opt. 36, 1559–1573 (1989).
[CrossRef]

1988 (2)

1987 (1)

1984 (1)

B. Ya. Zel’dovich, D. I. Mirovitskii, N. V. Rostovtseva, O. B. Serov, “Characteristics of two-layer phase holograms,” Sov. J. Quantum Electron. 14, 364–369 (1984).
[CrossRef]

1983 (1)

J. W. Lewis, L. Solymar, “Spurious waves in thick phase gratings,” Opt. Commun. 47, 23–26 (1983).
[CrossRef]

1971 (1)

H. Dammann, K. Gortler, “High-efficiency in-line multiple imaging by means of multiple phase holograms,” Opt. Commun. 3, 312–315 (1971).
[CrossRef]

Anderson, D. Z.

Belendez, A.

Brady, D. J.

Burckhardt, C. B.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971).

Cawte, P. S.

P. S. Cawte, “The diffraction efficiency of multiple grating holographic fan-out elements,” in Holographics International ’92, Y. N. Denisyuk, F. Wybrowski, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1732, 36–47 (1992).

Chen, Q. R.

K. P. Wang, L. R. Guo, Q. R. Chen, “Red sensitivity of dichromated cellulose triacetate as a holographic recording material,” Opt. Lett. 19, 1240–1242 (1994).
[CrossRef] [PubMed]

Q. R. Chen, K. P. Wang, L. R. Guo, “Real time diffraction efficiency and the anti-humidity mechanism of NGD holograms,” Sci. Sinica A 37, 221–226 (1994).

K. P. Wang, Q. R. Chen, L. R. Guo, “A new holographic recording material: dichromated cellulose triacetate,” Acta Opt. Sinica 13, 924–928 (1993).

K. P. Wang, L. R. Guo, Q. R. Chen, “Nogelatin dichromated holographic recording material and its real time property,” Acta Opt. Sinica 11, 956–958 (1991).

K. P. Wang, Q. R. Chen, L. R. Guo, “Influence of electron donors on the real-time diffraction efficiency of NGD holograms,” in Holographics International ’92, Y. N. Denisyuk, F. Wybrowski, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1732, 601–605 (1992).

Collier, R. J.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971).

Cooke, D. J.

L. Solymar, D. J. Cooke, Volume Holography and Volume Gratings (Academic, New York, 1981).

Dammann, H.

H. Dammann, K. Gortler, “High-efficiency in-line multiple imaging by means of multiple phase holograms,” Opt. Commun. 3, 312–315 (1971).
[CrossRef]

Dong, W.

W. Dong, Y. Liu, J. Fan, J. Li, Chemistry for Making Lithographic Plates (Printing Industry Press, Beijing, 1987).

Fan, J.

W. Dong, Y. Liu, J. Fan, J. Li, Chemistry for Making Lithographic Plates (Printing Industry Press, Beijing, 1987).

Fimia, A.

Gortler, K.

H. Dammann, K. Gortler, “High-efficiency in-line multiple imaging by means of multiple phase holograms,” Opt. Commun. 3, 312–315 (1971).
[CrossRef]

Granger, A.

Guo, L. R.

K. P. Wang, L. R. Guo, Q. R. Chen, “Red sensitivity of dichromated cellulose triacetate as a holographic recording material,” Opt. Lett. 19, 1240–1242 (1994).
[CrossRef] [PubMed]

L. Zhou, L. R. Guo, K. P. Wang, “The photochemical etching property of photosensitive cellulose triacetate,” Opto-Electron. Eng. 21, 48–51 (1994).

Q. R. Chen, K. P. Wang, L. R. Guo, “Real time diffraction efficiency and the anti-humidity mechanism of NGD holograms,” Sci. Sinica A 37, 221–226 (1994).

K. P. Wang, Q. R. Chen, L. R. Guo, “A new holographic recording material: dichromated cellulose triacetate,” Acta Opt. Sinica 13, 924–928 (1993).

K. P. Wang, L. R. Guo, Q. R. Chen, “Nogelatin dichromated holographic recording material and its real time property,” Acta Opt. Sinica 11, 956–958 (1991).

K. P. Wang, Q. R. Chen, L. R. Guo, “Influence of electron donors on the real-time diffraction efficiency of NGD holograms,” in Holographics International ’92, Y. N. Denisyuk, F. Wybrowski, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1732, 601–605 (1992).

Johnson, R. V.

Kobolla, H.

H. Kobolla, J. Schmidt, J. T. Sheridan, N. Streibl, R. Volkel, “Holographic optical beam splitters in dichromated gelatin,” J. Mod. Opt. 39, 881–887 (1992).
[CrossRef]

Lessard, R. A.

A. Granger, L. Song, R. A. Lessard, “Multiple beam generation using a stratified volume holographic grating,” Appl. Opt. 32, 2534–2537 (1993).
[CrossRef] [PubMed]

L. Song, R. A. Lessard, “Diffraction efficiency of a thin amplitude–phase holographic grating: a convolution approach,” J. Mod. Opt. 37, 1319–1328 (1990).
[CrossRef]

Lewis, J. W.

J. W. Lewis, L. Solymar, “Spurious waves in thick phase gratings,” Opt. Commun. 47, 23–26 (1983).
[CrossRef]

Li, J.

W. Dong, Y. Liu, J. Fan, J. Li, Chemistry for Making Lithographic Plates (Printing Industry Press, Beijing, 1987).

Lin, L. H.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971).

Lininger, D. M.

Liu, Y.

W. Dong, Y. Liu, J. Fan, J. Li, Chemistry for Making Lithographic Plates (Printing Industry Press, Beijing, 1987).

Mirovitskii, D. I.

B. Ya. Zel’dovich, D. I. Mirovitskii, N. V. Rostovtseva, O. B. Serov, “Characteristics of two-layer phase holograms,” Sov. J. Quantum Electron. 14, 364–369 (1984).
[CrossRef]

Nordin, G. P.

Pascual, I.

Psaltis, D.

Rostovtseva, N. V.

B. Ya. Zel’dovich, D. I. Mirovitskii, N. V. Rostovtseva, O. B. Serov, “Characteristics of two-layer phase holograms,” Sov. J. Quantum Electron. 14, 364–369 (1984).
[CrossRef]

Schmidt, J.

H. Kobolla, J. Schmidt, J. T. Sheridan, N. Streibl, R. Volkel, “Holographic optical beam splitters in dichromated gelatin,” J. Mod. Opt. 39, 881–887 (1992).
[CrossRef]

Serov, O. B.

B. Ya. Zel’dovich, D. I. Mirovitskii, N. V. Rostovtseva, O. B. Serov, “Characteristics of two-layer phase holograms,” Sov. J. Quantum Electron. 14, 364–369 (1984).
[CrossRef]

Sheridan, J. T.

J. T. Sheridan, “Stacked volume holographic gratings: part I, transmission gratings in series,” Optik 95, 73–80 (1993).

H. Kobolla, J. Schmidt, J. T. Sheridan, N. Streibl, R. Volkel, “Holographic optical beam splitters in dichromated gelatin,” J. Mod. Opt. 39, 881–887 (1992).
[CrossRef]

Solymar, L.

J. W. Lewis, L. Solymar, “Spurious waves in thick phase gratings,” Opt. Commun. 47, 23–26 (1983).
[CrossRef]

L. Solymar, D. J. Cooke, Volume Holography and Volume Gratings (Academic, New York, 1981).

Song, L.

A. Granger, L. Song, R. A. Lessard, “Multiple beam generation using a stratified volume holographic grating,” Appl. Opt. 32, 2534–2537 (1993).
[CrossRef] [PubMed]

L. Song, R. A. Lessard, “Diffraction efficiency of a thin amplitude–phase holographic grating: a convolution approach,” J. Mod. Opt. 37, 1319–1328 (1990).
[CrossRef]

Streibl, N.

H. Kobolla, J. Schmidt, J. T. Sheridan, N. Streibl, R. Volkel, “Holographic optical beam splitters in dichromated gelatin,” J. Mod. Opt. 39, 881–887 (1992).
[CrossRef]

N. Streibl, “Beam shaping with optical array generators,” J. Mod. Opt. 36, 1559–1573 (1989).
[CrossRef]

Tanguay, A. R.

Volkel, R.

H. Kobolla, J. Schmidt, J. T. Sheridan, N. Streibl, R. Volkel, “Holographic optical beam splitters in dichromated gelatin,” J. Mod. Opt. 39, 881–887 (1992).
[CrossRef]

Wagner, K.

Wang, K. P.

L. Zhou, L. R. Guo, K. P. Wang, “The photochemical etching property of photosensitive cellulose triacetate,” Opto-Electron. Eng. 21, 48–51 (1994).

Q. R. Chen, K. P. Wang, L. R. Guo, “Real time diffraction efficiency and the anti-humidity mechanism of NGD holograms,” Sci. Sinica A 37, 221–226 (1994).

K. P. Wang, L. R. Guo, Q. R. Chen, “Red sensitivity of dichromated cellulose triacetate as a holographic recording material,” Opt. Lett. 19, 1240–1242 (1994).
[CrossRef] [PubMed]

K. P. Wang, Q. R. Chen, L. R. Guo, “A new holographic recording material: dichromated cellulose triacetate,” Acta Opt. Sinica 13, 924–928 (1993).

K. P. Wang, L. R. Guo, Q. R. Chen, “Nogelatin dichromated holographic recording material and its real time property,” Acta Opt. Sinica 11, 956–958 (1991).

K. P. Wang, Q. R. Chen, L. R. Guo, “Influence of electron donors on the real-time diffraction efficiency of NGD holograms,” in Holographics International ’92, Y. N. Denisyuk, F. Wybrowski, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1732, 601–605 (1992).

Zel’dovich, B. Ya.

B. Ya. Zel’dovich, D. I. Mirovitskii, N. V. Rostovtseva, O. B. Serov, “Characteristics of two-layer phase holograms,” Sov. J. Quantum Electron. 14, 364–369 (1984).
[CrossRef]

Zhou, L.

L. Zhou, L. R. Guo, K. P. Wang, “The photochemical etching property of photosensitive cellulose triacetate,” Opto-Electron. Eng. 21, 48–51 (1994).

Acta Opt. Sinica (2)

K. P. Wang, Q. R. Chen, L. R. Guo, “A new holographic recording material: dichromated cellulose triacetate,” Acta Opt. Sinica 13, 924–928 (1993).

K. P. Wang, L. R. Guo, Q. R. Chen, “Nogelatin dichromated holographic recording material and its real time property,” Acta Opt. Sinica 11, 956–958 (1991).

Appl. Opt. (4)

J. Mod. Opt. (3)

H. Kobolla, J. Schmidt, J. T. Sheridan, N. Streibl, R. Volkel, “Holographic optical beam splitters in dichromated gelatin,” J. Mod. Opt. 39, 881–887 (1992).
[CrossRef]

N. Streibl, “Beam shaping with optical array generators,” J. Mod. Opt. 36, 1559–1573 (1989).
[CrossRef]

L. Song, R. A. Lessard, “Diffraction efficiency of a thin amplitude–phase holographic grating: a convolution approach,” J. Mod. Opt. 37, 1319–1328 (1990).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Commun. (2)

H. Dammann, K. Gortler, “High-efficiency in-line multiple imaging by means of multiple phase holograms,” Opt. Commun. 3, 312–315 (1971).
[CrossRef]

J. W. Lewis, L. Solymar, “Spurious waves in thick phase gratings,” Opt. Commun. 47, 23–26 (1983).
[CrossRef]

Opt. Lett. (2)

Optik (1)

J. T. Sheridan, “Stacked volume holographic gratings: part I, transmission gratings in series,” Optik 95, 73–80 (1993).

Opto-Electron. Eng. (1)

L. Zhou, L. R. Guo, K. P. Wang, “The photochemical etching property of photosensitive cellulose triacetate,” Opto-Electron. Eng. 21, 48–51 (1994).

Sci. Sinica A (1)

Q. R. Chen, K. P. Wang, L. R. Guo, “Real time diffraction efficiency and the anti-humidity mechanism of NGD holograms,” Sci. Sinica A 37, 221–226 (1994).

Sov. J. Quantum Electron. (1)

B. Ya. Zel’dovich, D. I. Mirovitskii, N. V. Rostovtseva, O. B. Serov, “Characteristics of two-layer phase holograms,” Sov. J. Quantum Electron. 14, 364–369 (1984).
[CrossRef]

Other (5)

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971).

P. S. Cawte, “The diffraction efficiency of multiple grating holographic fan-out elements,” in Holographics International ’92, Y. N. Denisyuk, F. Wybrowski, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1732, 36–47 (1992).

L. Solymar, D. J. Cooke, Volume Holography and Volume Gratings (Academic, New York, 1981).

W. Dong, Y. Liu, J. Fan, J. Li, Chemistry for Making Lithographic Plates (Printing Industry Press, Beijing, 1987).

K. P. Wang, Q. R. Chen, L. R. Guo, “Influence of electron donors on the real-time diffraction efficiency of NGD holograms,” in Holographics International ’92, Y. N. Denisyuk, F. Wybrowski, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1732, 601–605 (1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Angular selectivity for (a) a double-layer SG, and (b) a single-layer volume hologram.

Fig. 2
Fig. 2

Preprocess chemical changes: The compound on the left-hand side is the structural unit of CTA film, and the compound on the right-hand side is the structural unit of the chelating agent.

Fig. 3
Fig. 3

Relation of the diffraction efficiency of the first order versus the incident angle of the readout beam for a DCCTA SG. The grating frequency is 100 lines/mm, and the total thickness of the film is 145 μm.

Fig. 4
Fig. 4

Schematic illustration of the diffraction of two-layer SG’s.

Fig. 5
Fig. 5

Photographs of fan-out beams generated by DCCTA SG’s: (a) 2, (b) 3, (c) 4, and (d) 7 fan-out beams.

Tables (1)

Tables Icon

Table 1 Diffraction Efficiencies Obtained with DCCTA SG’s Used as Beam Splitters

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

{ A P } = { A M H M } { A N } , P = M + N ; M , N = 0 , ± 1 , ± 2 , , ± n ,
{ A M } = { j M J M ( V 1 ) } , { A N } = { j N J N ( V 2 ) } ,
H M = exp { ( j 2 π n l / λ ) [ 1 ( M λ f 0 / n ) 2 ] 1 / 2 }
A 0 = A + 2 H + 2 A + 2 , 2 + A + 1 H + 1 A + 1 , 1 + A 0 H 0 A 0 , 0 + A 1 H 1 A 1 , + 1 + A 2 H 2 A 2 , + 2 , A 1 = A + 1 H + 1 A + 1 , 2 + A 0 H 0 A 0 , 1 + A 1 H 1 A 1 , 0 + A 2 H 2 A 2 , + 1 , A + 1 = A + 2 H + 2 A + 2 , 1 + A + 1 H + 1 A + 1 , 0 + A 0 H 0 A 0 , + 1 + A 1 H 1 A 1 , + 2 , A 2 = A 0 H 0 A 0 , 2 + A 1 H 1 A 1 , 1 + A 2 H 2 A 2 , 0 , A + 2 = A + 2 H + 2 A + 2 , 0 + A + 1 H + 1 A + 1 , + 1 + A 0 H 0 A 0 , + 2 .
η = { 2 P = 1 q / 2 | A P 2 q even | A 0 | 2 + 2 P = 1 ( q 1 ) / 2 | A P 2 q odd ,

Metrics