Abstract

On the basis of white-light interferometry and statistical optics, a theoretical model for low-coherence optical tomography is presented that establishes the relation of interference modulation with path-length-resolved reflectance and that can provide analytical expressions and numerical solutions by means of a Fourier transform. The Monte Carlo technique is used to simulate the path-length-resolved reflectance from different multilayer tissue phantoms. Theoretical analyses and preliminary experimental results suggest that, unlike time-resolved spectroscopy, low-coherence optical tomography detects the local relative variations of path-length-resolved reflectance from the turbid tissues.

© 1995 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Monte Carlo modeling of optical coherence tomography imaging through turbid media

Qiang Lu, Xiaosong Gan, Min Gu, and Qingming Luo
Appl. Opt. 43(8) 1628-1637 (2004)

Extraction of optical scattering parameters and attenuation compensation in optical coherence tomography images of multilayered tissue structures

Lars Thrane, Michael H. Frosz, Thomas M. Jørgensen, Andreas Tycho, Harold T. Yura, and Peter E. Andersen
Opt. Lett. 29(14) 1641-1643 (2004)

Multiple scattering in optical coherence tomography. I. Investigation and modeling

Boris Karamata, Markus Laubscher, Marcel Leutenegger, Stéphane Bourquin, Theo Lasser, and Patrick Lambelet
J. Opt. Soc. Am. A 22(7) 1369-1379 (2005)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (16)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (19)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription