Abstract

Multilayer and gold coatings were applied to replicas of the 3600-line/mm ruled grating that was developed for the Naval Research Laboratory S082A spectroheliograph that was flown on the Skylab spacecraft. The Mo–Si multilayer coating had a peak normal-incidence reflectance of 50% at a wavelength of 136 Å. The normal-incidence efficiency of the multilayer-coated grating was measured by the use of synchrotron radiation and was compared with the efficiency of the gold-coated replica grating in the 115–340-Å wavelength region. The peak efficiency of the multilayer grating was 1.3% in the 133–137-Å region and was a factor of 65 higher than the efficiency of the gold grating. The multilayer and gold coated gratings, as well as an uncoated replica grating substrate, were characterized by the use of a scanning probe microscope. The rms microroughness of the uncoated and multilayer-coated gratings was 10 Å, and the microroughness of the gold grating was 16 Å.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Tousey, J. D. Bartoe, G. E. Brueckner, J. D. Purcell, “Extreme ultraviolet spectroheliograph ATM experiment S082A,” Appl. Opt. 16, 870–878 (1977).
    [PubMed]
  2. U. Feldman, J. D. Purcell, B. Dohne, An Atlas of Extreme Ultraviolet Spectroheliograms from 170–625 Angstroms, (Naval Research Laboratory, Washington, D.C., 1987), Vol. II, pp. 6–8.
  3. J. F. Seely, M. P. Kowalski, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, “On-blaze operation of a Mo/Si multilayer-coated, concave diffraction grating in the 136–142 Å wavelength region and near normal incidence,” Appl. Opt. 32, 4890–4897 (1993).
    [CrossRef] [PubMed]
  4. W. R. Hunter, J. C. Rife, “An ultrahigh vacuum reflectometer/goniometer for use with synchrotron radiation,” Nucl. Instrum. Methods A246, 465–468 (1986).
  5. J. C. Rife, W. R. Hunter, R. T. Williams, “Features and initial performance tests of the grating/crystal monochromator,” Nucl. Instrum. Methods Phys. Res. A246, 252–255 (1986); J. C. Rife, H. R. Sadeghi, W. R. Hunter, “Upgrades and recent performance of the grating/crystal monochromator,” Rev. Sci. Instrum. 60, 2064–2067 (1989).
    [CrossRef]
  6. M. P. Kowalski, R. G. Cruddace, J. F. Seely, J. C. Rife, W. R. Hunter, “Uncertainties in reflectance measurements made on the NRL Beamline X24C,” NRL Mem. Rep. 7620-95-7738 (Naval Research Laboratory, Washington, D.C., 1995).
  7. B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
    [CrossRef]
  8. M. P. Kowalski, T. W. Barbee, R. G. Cruddace, J. F. Seely, J. C. Rife, W. R. Hunter, “Efficiency and long-term stability of a multilayer-coated, ion-etched blazed holographic grating in the 125–133 Å wavelength region,” to be published in Appl. Opt.
  9. M. P. Kowalski, J. F. Seely, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, R. G. Cruddace, “Dual waveband operation of a multilayer-coated diffraction grating in the soft x-ray range at near-normal incidence,” Appl. Opt. 32, 2422–2425 (1993).
    [CrossRef] [PubMed]
  10. J. F. Seely, C. M. Brown, “Multilayer-coated grating spectrometer operating in the extreme-ultraviolet region and based on the Seya–Namioka mount,” Appl. Opt. 32, 6288–6293 (1993).
    [CrossRef] [PubMed]
  11. R. J. Thomas, R. A. M. Keski-Kuha, W. M. Neupert, C. E. Condor, J. S. Gum, “Extreme ultraviolet performance of a multilayer coated high density toroidal grating,” Appl. Opt. 30, 2245–2251 (1991).
    [CrossRef] [PubMed]

1993 (4)

1991 (1)

1986 (2)

W. R. Hunter, J. C. Rife, “An ultrahigh vacuum reflectometer/goniometer for use with synchrotron radiation,” Nucl. Instrum. Methods A246, 465–468 (1986).

J. C. Rife, W. R. Hunter, R. T. Williams, “Features and initial performance tests of the grating/crystal monochromator,” Nucl. Instrum. Methods Phys. Res. A246, 252–255 (1986); J. C. Rife, H. R. Sadeghi, W. R. Hunter, “Upgrades and recent performance of the grating/crystal monochromator,” Rev. Sci. Instrum. 60, 2064–2067 (1989).
[CrossRef]

1977 (1)

Barbee, T. W.

Bartoe, J. D.

Boyer, C. N.

Brown, C. M.

Brueckner, G. E.

Condor, C. E.

Cruddace, R. G.

M. P. Kowalski, J. F. Seely, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, R. G. Cruddace, “Dual waveband operation of a multilayer-coated diffraction grating in the soft x-ray range at near-normal incidence,” Appl. Opt. 32, 2422–2425 (1993).
[CrossRef] [PubMed]

M. P. Kowalski, T. W. Barbee, R. G. Cruddace, J. F. Seely, J. C. Rife, W. R. Hunter, “Efficiency and long-term stability of a multilayer-coated, ion-etched blazed holographic grating in the 125–133 Å wavelength region,” to be published in Appl. Opt.

M. P. Kowalski, R. G. Cruddace, J. F. Seely, J. C. Rife, W. R. Hunter, “Uncertainties in reflectance measurements made on the NRL Beamline X24C,” NRL Mem. Rep. 7620-95-7738 (Naval Research Laboratory, Washington, D.C., 1995).

Davis, J. C.

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

Dohne, B.

U. Feldman, J. D. Purcell, B. Dohne, An Atlas of Extreme Ultraviolet Spectroheliograms from 170–625 Angstroms, (Naval Research Laboratory, Washington, D.C., 1987), Vol. II, pp. 6–8.

Feldman, U.

U. Feldman, J. D. Purcell, B. Dohne, An Atlas of Extreme Ultraviolet Spectroheliograms from 170–625 Angstroms, (Naval Research Laboratory, Washington, D.C., 1987), Vol. II, pp. 6–8.

Gullikson, E. M.

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

Gum, J. S.

Henke, B. L.

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

Holland, G. E.

Hunter, W. R.

M. P. Kowalski, J. F. Seely, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, R. G. Cruddace, “Dual waveband operation of a multilayer-coated diffraction grating in the soft x-ray range at near-normal incidence,” Appl. Opt. 32, 2422–2425 (1993).
[CrossRef] [PubMed]

J. F. Seely, M. P. Kowalski, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, “On-blaze operation of a Mo/Si multilayer-coated, concave diffraction grating in the 136–142 Å wavelength region and near normal incidence,” Appl. Opt. 32, 4890–4897 (1993).
[CrossRef] [PubMed]

W. R. Hunter, J. C. Rife, “An ultrahigh vacuum reflectometer/goniometer for use with synchrotron radiation,” Nucl. Instrum. Methods A246, 465–468 (1986).

J. C. Rife, W. R. Hunter, R. T. Williams, “Features and initial performance tests of the grating/crystal monochromator,” Nucl. Instrum. Methods Phys. Res. A246, 252–255 (1986); J. C. Rife, H. R. Sadeghi, W. R. Hunter, “Upgrades and recent performance of the grating/crystal monochromator,” Rev. Sci. Instrum. 60, 2064–2067 (1989).
[CrossRef]

M. P. Kowalski, R. G. Cruddace, J. F. Seely, J. C. Rife, W. R. Hunter, “Uncertainties in reflectance measurements made on the NRL Beamline X24C,” NRL Mem. Rep. 7620-95-7738 (Naval Research Laboratory, Washington, D.C., 1995).

M. P. Kowalski, T. W. Barbee, R. G. Cruddace, J. F. Seely, J. C. Rife, W. R. Hunter, “Efficiency and long-term stability of a multilayer-coated, ion-etched blazed holographic grating in the 125–133 Å wavelength region,” to be published in Appl. Opt.

Keski-Kuha, R. A. M.

Kowalski, M. P.

M. P. Kowalski, J. F. Seely, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, R. G. Cruddace, “Dual waveband operation of a multilayer-coated diffraction grating in the soft x-ray range at near-normal incidence,” Appl. Opt. 32, 2422–2425 (1993).
[CrossRef] [PubMed]

J. F. Seely, M. P. Kowalski, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, “On-blaze operation of a Mo/Si multilayer-coated, concave diffraction grating in the 136–142 Å wavelength region and near normal incidence,” Appl. Opt. 32, 4890–4897 (1993).
[CrossRef] [PubMed]

M. P. Kowalski, T. W. Barbee, R. G. Cruddace, J. F. Seely, J. C. Rife, W. R. Hunter, “Efficiency and long-term stability of a multilayer-coated, ion-etched blazed holographic grating in the 125–133 Å wavelength region,” to be published in Appl. Opt.

M. P. Kowalski, R. G. Cruddace, J. F. Seely, J. C. Rife, W. R. Hunter, “Uncertainties in reflectance measurements made on the NRL Beamline X24C,” NRL Mem. Rep. 7620-95-7738 (Naval Research Laboratory, Washington, D.C., 1995).

Neupert, W. M.

Purcell, J. D.

R. Tousey, J. D. Bartoe, G. E. Brueckner, J. D. Purcell, “Extreme ultraviolet spectroheliograph ATM experiment S082A,” Appl. Opt. 16, 870–878 (1977).
[PubMed]

U. Feldman, J. D. Purcell, B. Dohne, An Atlas of Extreme Ultraviolet Spectroheliograms from 170–625 Angstroms, (Naval Research Laboratory, Washington, D.C., 1987), Vol. II, pp. 6–8.

Rife, J. C.

J. F. Seely, M. P. Kowalski, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, “On-blaze operation of a Mo/Si multilayer-coated, concave diffraction grating in the 136–142 Å wavelength region and near normal incidence,” Appl. Opt. 32, 4890–4897 (1993).
[CrossRef] [PubMed]

M. P. Kowalski, J. F. Seely, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, R. G. Cruddace, “Dual waveband operation of a multilayer-coated diffraction grating in the soft x-ray range at near-normal incidence,” Appl. Opt. 32, 2422–2425 (1993).
[CrossRef] [PubMed]

W. R. Hunter, J. C. Rife, “An ultrahigh vacuum reflectometer/goniometer for use with synchrotron radiation,” Nucl. Instrum. Methods A246, 465–468 (1986).

J. C. Rife, W. R. Hunter, R. T. Williams, “Features and initial performance tests of the grating/crystal monochromator,” Nucl. Instrum. Methods Phys. Res. A246, 252–255 (1986); J. C. Rife, H. R. Sadeghi, W. R. Hunter, “Upgrades and recent performance of the grating/crystal monochromator,” Rev. Sci. Instrum. 60, 2064–2067 (1989).
[CrossRef]

M. P. Kowalski, R. G. Cruddace, J. F. Seely, J. C. Rife, W. R. Hunter, “Uncertainties in reflectance measurements made on the NRL Beamline X24C,” NRL Mem. Rep. 7620-95-7738 (Naval Research Laboratory, Washington, D.C., 1995).

M. P. Kowalski, T. W. Barbee, R. G. Cruddace, J. F. Seely, J. C. Rife, W. R. Hunter, “Efficiency and long-term stability of a multilayer-coated, ion-etched blazed holographic grating in the 125–133 Å wavelength region,” to be published in Appl. Opt.

Seely, J. F.

Thomas, R. J.

Tousey, R.

Williams, R. T.

J. C. Rife, W. R. Hunter, R. T. Williams, “Features and initial performance tests of the grating/crystal monochromator,” Nucl. Instrum. Methods Phys. Res. A246, 252–255 (1986); J. C. Rife, H. R. Sadeghi, W. R. Hunter, “Upgrades and recent performance of the grating/crystal monochromator,” Rev. Sci. Instrum. 60, 2064–2067 (1989).
[CrossRef]

Appl. Opt. (5)

At. Data Nucl. Data Tables (1)

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

Nucl. Instrum. Methods (1)

W. R. Hunter, J. C. Rife, “An ultrahigh vacuum reflectometer/goniometer for use with synchrotron radiation,” Nucl. Instrum. Methods A246, 465–468 (1986).

Nucl. Instrum. Methods Phys. Res. (1)

J. C. Rife, W. R. Hunter, R. T. Williams, “Features and initial performance tests of the grating/crystal monochromator,” Nucl. Instrum. Methods Phys. Res. A246, 252–255 (1986); J. C. Rife, H. R. Sadeghi, W. R. Hunter, “Upgrades and recent performance of the grating/crystal monochromator,” Rev. Sci. Instrum. 60, 2064–2067 (1989).
[CrossRef]

Other (3)

M. P. Kowalski, R. G. Cruddace, J. F. Seely, J. C. Rife, W. R. Hunter, “Uncertainties in reflectance measurements made on the NRL Beamline X24C,” NRL Mem. Rep. 7620-95-7738 (Naval Research Laboratory, Washington, D.C., 1995).

M. P. Kowalski, T. W. Barbee, R. G. Cruddace, J. F. Seely, J. C. Rife, W. R. Hunter, “Efficiency and long-term stability of a multilayer-coated, ion-etched blazed holographic grating in the 125–133 Å wavelength region,” to be published in Appl. Opt.

U. Feldman, J. D. Purcell, B. Dohne, An Atlas of Extreme Ultraviolet Spectroheliograms from 170–625 Angstroms, (Naval Research Laboratory, Washington, D.C., 1987), Vol. II, pp. 6–8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Data points are the measured reflectance of the Mo–Si multilayer coating on the flat witness sample at an angle of incidence of 10°. The curves are the calculated reflectances for Debye–Waller roughness parameters of σ = 3 Å and σ = 10 Å. (b) The solid curve is the calculated reflectance of the multilayer coating on the grating substrate for roughness σ = 10 Å and for an angle of incidence on the grating facets of 13.14°, and the dashed curve is the calculated reflectance of gold with σ = 16 Å.

Fig. 2
Fig. 2

SPM images of the multilayer-coated ruled replica Skylab grating (left) and the multilayer-coated holographic ion-etched grating (right). The horizontal and vertical scales have been adjusted to show the texture of the groove profile. The groove spacings are 2778 Å, and the average groove height is 150 Å for both gratings.

Fig. 3
Fig. 3

(a) SPM scan line perpendicular to the grooves of the Skylab multilayer grating. The solid curves are polynomials that were fitted to the data points. (b) Deviations of the data points from the polynomials.

Fig. 4
Fig. 4

SPM scan lines perpendicular to the grooves of (a) the uncoated Skylab grating substrate, (b) the gold-coated Skylab grating, (c) the multilayer-coated Skylab grating. The curves are polynomials that were fitted to the data points.

Fig. 5
Fig. 5

Efficiencies of the multilayer (ML) and gold (AU) Skylab gratings measured at 10° incidence: (a) the efficiency of the ML grating at a wavelength of 272 Å and of the AU grating at 280 Å, (b) the efficiency of the ML grating at 135 Å and of the AU grating at 140 Å. The inside (m > 0) and outside (m < 0) orders are indicated.

Fig. 6
Fig. 6

Reflectance of the multilayer witness flat at a wavelength of 135 Å. The detector angle was scanned for a fixed angle of incidence of 10°.

Fig. 7
Fig. 7

Reflectance of the multilayer (ML) witness flat and the second-order efficiency of the multilayer grating, both measured at angles of incidence of 10°.

Fig. 8
Fig. 8

(a) Solid curves are the efficiencies of the gold-coated Skylab grating measured at an angle of incidence of 10° and in the outside first (m = −1) and second (m = −2) orders. The dashed curve is the first-order efficiency measurement from Ref. 1. (b) The efficiencies of two other gold-coated ruled replica gratings. The solid curves are the efficiencies of a 2400-line/mm grating with a 2° blaze angle and a 2.2-m radius of curvature, and the dashed curve is the first-order efficiency of a 3600-line/mm grating with a 2.8° blaze angle and a 1.2-m radius of curvature. (c) The inferred groove efficiency of the Skylab grating.

Metrics