Abstract

Holographic stars fabricated on DuPont’s holographic recording film HRF 600X010 by the use of He–Ne laser light are demonstrated. The stars operate with plane waves, the transmitted portions of the input beams are used at the corresponding outputs, and the gratings are in the volume regime of diffraction. Multiple exposure based on the Bragg degeneracy effect is employed, which drastically reduces the number of multiplexed gratings and requires a three-dimensional arrangement of the replay beams.

The star operates at different wavelengths only by the readjustment of the Bragg angles.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Robertson, M. R. Taghizadeh, J. Turunen, A. Vasara, “Fabrication of space invariant fanout components in dichromated gelatin,” Appl. Opt. 29, 1134–1141 (1990).
    [CrossRef] [PubMed]
  2. D. Prongue, H. P. Herzig, R. Dandliker, M. T. Gale, “Optimized kinoform structures for highly efficient fan-out elements,” Appl. Opt. 31, 5706–5711 (1992).
    [CrossRef] [PubMed]
  3. P. Asthana, G. P. Nordin, A. R. Tanguay, B. K. Jenkins, “Analysis of weighted fan-out/fan-in volume holographic optical interconnects,” Appl. Opt. 32, 1441–1469 (1993).
    [CrossRef] [PubMed]
  4. M. Tabiani, M. Kavehrad, “Theory of an efficient N × N passive optical star coupler,” J. Lightwave Technol. 9, 448–455 (1991).
    [CrossRef]
  5. R. Syms, Volume Practical Holography (Academic, London, 1990), Chap. 7, pp. 195–222.
  6. E. Simova, M. Kavehrad, “4 × 4 holographic star coupler in silver-halide sensitized gelatin,” Opt. Eng. 32, 2233–2239 (1993).
    [CrossRef]
  7. G. Yun, M. Kavehrad, “Grating degeneration technique and sandwich structure for holographic N × N passive star couplers,” J. Lightwave Technol. 10, 1562–1569 (1992).
    [CrossRef]
  8. E. Simova, M. Kavehrad, “4 × 4 holographic star coupler fabricated in silver-halide gelatin,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 2043, 150–156 (1993).
  9. E. Simova, G. Yun, M. Kavehrad, “Holographic star coupler based on Bragg degeneracy,” Opt. Mem. Neural Networks 3, 51–63 (1994).
  10. H. Lee, X. Gu, D. Psaltis, “Volume holographic interconnects with maximal capacity and minimal cross talk,” J. Appl. Phys. 65, 2191–2193 (1989).
    [CrossRef]
  11. K. Wagner, T. M. Slagle, “Optical competitive learning with VLSI/liquid-crystal winner-take-all modulators,” Appl. Opt. 32, 1408–1435 (1993).
    [CrossRef] [PubMed]
  12. Y. Owechko, “Cascaded-grating holography for artificial neural networks,” Appl. Opt. 32, 1380–1398 (1993).
    [CrossRef] [PubMed]
  13. A. M. Weber, W. K. Smothers, T. J. Trout, D. J. Mickish, “Hologram recording in DuPont’s new photopolymer material,” in Practical Holography IV, S. A. Benton, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1212, 30–39 (1990).

1994 (1)

E. Simova, G. Yun, M. Kavehrad, “Holographic star coupler based on Bragg degeneracy,” Opt. Mem. Neural Networks 3, 51–63 (1994).

1993 (4)

1992 (2)

D. Prongue, H. P. Herzig, R. Dandliker, M. T. Gale, “Optimized kinoform structures for highly efficient fan-out elements,” Appl. Opt. 31, 5706–5711 (1992).
[CrossRef] [PubMed]

G. Yun, M. Kavehrad, “Grating degeneration technique and sandwich structure for holographic N × N passive star couplers,” J. Lightwave Technol. 10, 1562–1569 (1992).
[CrossRef]

1991 (1)

M. Tabiani, M. Kavehrad, “Theory of an efficient N × N passive optical star coupler,” J. Lightwave Technol. 9, 448–455 (1991).
[CrossRef]

1990 (1)

1989 (1)

H. Lee, X. Gu, D. Psaltis, “Volume holographic interconnects with maximal capacity and minimal cross talk,” J. Appl. Phys. 65, 2191–2193 (1989).
[CrossRef]

Asthana, P.

Dandliker, R.

Gale, M. T.

Gu, X.

H. Lee, X. Gu, D. Psaltis, “Volume holographic interconnects with maximal capacity and minimal cross talk,” J. Appl. Phys. 65, 2191–2193 (1989).
[CrossRef]

Herzig, H. P.

Jenkins, B. K.

Kavehrad, M.

E. Simova, G. Yun, M. Kavehrad, “Holographic star coupler based on Bragg degeneracy,” Opt. Mem. Neural Networks 3, 51–63 (1994).

E. Simova, M. Kavehrad, “4 × 4 holographic star coupler in silver-halide sensitized gelatin,” Opt. Eng. 32, 2233–2239 (1993).
[CrossRef]

G. Yun, M. Kavehrad, “Grating degeneration technique and sandwich structure for holographic N × N passive star couplers,” J. Lightwave Technol. 10, 1562–1569 (1992).
[CrossRef]

M. Tabiani, M. Kavehrad, “Theory of an efficient N × N passive optical star coupler,” J. Lightwave Technol. 9, 448–455 (1991).
[CrossRef]

E. Simova, M. Kavehrad, “4 × 4 holographic star coupler fabricated in silver-halide gelatin,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 2043, 150–156 (1993).

Lee, H.

H. Lee, X. Gu, D. Psaltis, “Volume holographic interconnects with maximal capacity and minimal cross talk,” J. Appl. Phys. 65, 2191–2193 (1989).
[CrossRef]

Mickish, D. J.

A. M. Weber, W. K. Smothers, T. J. Trout, D. J. Mickish, “Hologram recording in DuPont’s new photopolymer material,” in Practical Holography IV, S. A. Benton, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1212, 30–39 (1990).

Nordin, G. P.

Owechko, Y.

Prongue, D.

Psaltis, D.

H. Lee, X. Gu, D. Psaltis, “Volume holographic interconnects with maximal capacity and minimal cross talk,” J. Appl. Phys. 65, 2191–2193 (1989).
[CrossRef]

Robertson, B.

Simova, E.

E. Simova, G. Yun, M. Kavehrad, “Holographic star coupler based on Bragg degeneracy,” Opt. Mem. Neural Networks 3, 51–63 (1994).

E. Simova, M. Kavehrad, “4 × 4 holographic star coupler in silver-halide sensitized gelatin,” Opt. Eng. 32, 2233–2239 (1993).
[CrossRef]

E. Simova, M. Kavehrad, “4 × 4 holographic star coupler fabricated in silver-halide gelatin,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 2043, 150–156 (1993).

Slagle, T. M.

Smothers, W. K.

A. M. Weber, W. K. Smothers, T. J. Trout, D. J. Mickish, “Hologram recording in DuPont’s new photopolymer material,” in Practical Holography IV, S. A. Benton, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1212, 30–39 (1990).

Syms, R.

R. Syms, Volume Practical Holography (Academic, London, 1990), Chap. 7, pp. 195–222.

Tabiani, M.

M. Tabiani, M. Kavehrad, “Theory of an efficient N × N passive optical star coupler,” J. Lightwave Technol. 9, 448–455 (1991).
[CrossRef]

Taghizadeh, M. R.

Tanguay, A. R.

Trout, T. J.

A. M. Weber, W. K. Smothers, T. J. Trout, D. J. Mickish, “Hologram recording in DuPont’s new photopolymer material,” in Practical Holography IV, S. A. Benton, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1212, 30–39 (1990).

Turunen, J.

Vasara, A.

Wagner, K.

Weber, A. M.

A. M. Weber, W. K. Smothers, T. J. Trout, D. J. Mickish, “Hologram recording in DuPont’s new photopolymer material,” in Practical Holography IV, S. A. Benton, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1212, 30–39 (1990).

Yun, G.

E. Simova, G. Yun, M. Kavehrad, “Holographic star coupler based on Bragg degeneracy,” Opt. Mem. Neural Networks 3, 51–63 (1994).

G. Yun, M. Kavehrad, “Grating degeneration technique and sandwich structure for holographic N × N passive star couplers,” J. Lightwave Technol. 10, 1562–1569 (1992).
[CrossRef]

Appl. Opt. (5)

J. Appl. Phys. (1)

H. Lee, X. Gu, D. Psaltis, “Volume holographic interconnects with maximal capacity and minimal cross talk,” J. Appl. Phys. 65, 2191–2193 (1989).
[CrossRef]

J. Lightwave Technol. (2)

M. Tabiani, M. Kavehrad, “Theory of an efficient N × N passive optical star coupler,” J. Lightwave Technol. 9, 448–455 (1991).
[CrossRef]

G. Yun, M. Kavehrad, “Grating degeneration technique and sandwich structure for holographic N × N passive star couplers,” J. Lightwave Technol. 10, 1562–1569 (1992).
[CrossRef]

Opt. Eng. (1)

E. Simova, M. Kavehrad, “4 × 4 holographic star coupler in silver-halide sensitized gelatin,” Opt. Eng. 32, 2233–2239 (1993).
[CrossRef]

Opt. Mem. Neural Networks (1)

E. Simova, G. Yun, M. Kavehrad, “Holographic star coupler based on Bragg degeneracy,” Opt. Mem. Neural Networks 3, 51–63 (1994).

Other (3)

E. Simova, M. Kavehrad, “4 × 4 holographic star coupler fabricated in silver-halide gelatin,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 2043, 150–156 (1993).

R. Syms, Volume Practical Holography (Academic, London, 1990), Chap. 7, pp. 195–222.

A. M. Weber, W. K. Smothers, T. J. Trout, D. J. Mickish, “Hologram recording in DuPont’s new photopolymer material,” in Practical Holography IV, S. A. Benton, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1212, 30–39 (1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

k-space diagram illustrating three grating vectors K i , i = 1, 2, 3, and replay directions k i , i = 1, … , 6 based on the Bragg degeneracy effect.

Fig. 2
Fig. 2

k-space diagram illustrating replay based on Bragg degeneracy for two wavelengths λ1 and λ2, and replay vectors k i and k i ′, i = 1, … , 6, respectively.

Fig. 3
Fig. 3

Measured diffraction efficiency versus exposure energy before and after baking.

Tables (2)

Tables Icon

Table 1 Characterization of a 6-to-6 Holographic Star at 633 nm

Tables Icon

Table 2 Characterization of a 6-to-6 Holographic Star at 790 nm

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

φ = 2 π / N ,             ψ = π / 4 - arcsin [ 2 sin θ rec ( λ replay / λ rec ) ] .
η i j = I i j / I i ,
l i = 10 log ( I i / j = 1 4 I i j ) .
Δ η i j = - 10 log ( I i j max / I i j min ) .

Metrics