Abstract

Planar laser-induced fluorescence images of OH have been obtained in liquid-fueled spray flames burning heptane, ethanol, and methanol over a range of pressures from 0.1 to 1.0 MPa. In addition to the OH fluorescence, a nonresonant fluorescence interference that increased rapidly with pressure was detected. Examination of the spectrum of this interference indicates that it arises from hydrocarbon fuel-fragment species in the fuel-rich zones of the flame. The pressure dependence of the fluorescence signal is examined in both steady-state and time-dependent analyses, and a model for evaluation of pressure effects and quenching variations in quantitative imaging measurements in nonpremixed flame environments is presented. The results indicate that increased combustor pressure results in a rapid rise of the volume fraction of hydrocarbon fragments and a decrease in the OH volume fraction.

© 1995 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Comparisons of laser-saturated, laser-induced, and planar laser-induced fluorescence measurements of nitric oxide in a lean direct-injection spray flame

Clayton S. Cooper, Rayavarapu V. Ravikrishna, and Normand M. Laurendeau
Appl. Opt. 37(21) 4823-4833 (1998)

Application of tunable excimer lasers to combustion diagnostics: a review

Erhard W. Rothe and Peter Andresen
Appl. Opt. 36(18) 3971-4033 (1997)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription