Abstract

A dual CO2 laser-based differential absorption lidar (DIAL) system has been constructed and demonstrated for range-resolved mapping of chemical vapor plumes. The system acquires high range resolution through the use of plasma-shutter pulse clippers that extinguish the nitrogen tail of the CO2-laser output. A programmable servomotor-driven scanner allows full hemispherical coverage of the interrogated field. A high-speed direct-detection receiver subsystem is used to gather, process, and display vapor-concentration data in near real time. Data demonstrating range-resolved detection of low concentrations of chemical plumes from ranges of 1 to 2 km are presented. In the column-content detection mode, trace levels of secondary vapors from various organophosphate liquids were monitored. Detection of an SF6 vapor plume released 16 km from the DIAL system is also adduced.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. R. Murray, R. D. Hake, J. E. van der Laan, J. G. Hawley, “Atmospheric water vapor measurements with a 10 micron DIAL system,” Appl. Phys. Lett. 28, 542–543 (1976).
    [CrossRef]
  2. E. R. Murray, J. E. van der Laan, “Remote measurement of ethylene using a CO2 differential-absorption lidar,” Appl. Opt. 17, 814–817 (1978).
    [CrossRef] [PubMed]
  3. N. Menyuk, D. K. Killinger, W. E. DeFeo, “Laser remote sensing of hydrazine, MMH, and UDMH, using a differential-absorption CO2 lidar,” Appl. Opt. 21, 2275–2286 (1982).
    [CrossRef] [PubMed]
  4. H. Ahlberg, S. Lundqvist, B. Olsson, “CO2 laser long-path measurements of diffuse leakages from a petrochemical plant,” Appl. Opt. 24, 3924–3928 (1985).
    [CrossRef] [PubMed]
  5. A. Ben-David, S. L. Emery, S. W. Gotoff, F. D’Amico, “High pulse repetition frequency, multiple wavelength, pulsed CO2 lidar system for atmospheric transmission and target reflectance measurements,” Appl. Opt. 31, 4224–4232 (1992).
    [CrossRef] [PubMed]
  6. A. P. Force, D. K. Killinger, W. E. DeFeo, N. Menyuk, “Laser remote sensing of atmospheric ammonia using a CO2 lidar system,” Appl. Opt. 24, 2837–2841 (1985).
    [CrossRef] [PubMed]
  7. A. J. Campillo, “Fresnel diffraction effects in the design of high-power laser systems,” J. Appl. Phys. 23, 83–85 (1973).
  8. P. Holland, J. van der Laan, K. Phelps, S. Gotoff, “Design of a mobile differential absorption lidar (DIAL) system,” in Proceedings of the International Conference on Lasers ’87 (STS, McLean, Va., 1988), pp. 694–695.
  9. J. Leonelli, J. van der Laan, P. Holland, L. Fletcher, R. Warren, D. McPherrin, “Multiwavelength CO2 DIAL system designed for quantitative concentration measurement,” in Proceedings of the International Conference on Lasers ’89 (STS, McLean, Va., 1990), pp. 567–573.
  10. Y. Zhao, T. K. Lea, R. M. Schotland, “Correction function for the lidar equation and some techniques for incoherent CO2 lidar data reduction,” Appl. Opt. 27, 2730–2740 (1988).
    [CrossRef] [PubMed]
  11. A. Ben-David, A. P. Force, F. M. D’Amico, S. L. Emery, “The effect of a CO2 laser pulse shape on the accuracy of DIAL measurements,” J. Atmos. Oceanic Technol. 9, 520–525 (1992).
    [CrossRef]
  12. R. E. Warren, “Detection and discrimination using multiple wavelength differential absorption lidar,” Appl. Opt. 24, 3541–3545 (1985).
    [CrossRef] [PubMed]
  13. J. G. Hawley, “1985 lidar test program,” Final Report, contract DAAK11-82-C-0158 (SRI International, Menlo Park, Calif., 1986).
  14. C. B. Carlisle, J. E. van der Laan, “ADEDIS acceptance test report,” (SRI International, Menlo Park, Calif., 1992).
  15. R. C. Harney, “Laser PRF considerations in differential absorption lidar applications,” Appl. Opt. 24, 3747–3750 (1983).
    [CrossRef]
  16. N. Menyuk, D. K. Killinger, “Assessment of relative error sources in IR DIAL measurement accuracy,” Appl. Opt. 22, 2690–2698 (1983).
    [CrossRef] [PubMed]
  17. R. E. Warren, “Adaptive Kalman–Bucy filter for differential absorption lidar time series data,” Appl. Opt. 26, 4755–4760 (1987).
    [CrossRef] [PubMed]
  18. E. E. Uthe, “Airborne CO2 DIAL measurement of atmospheric tracer gas concentration distributions,” Appl. Opt. 25, 2492–2498 (1986).
    [CrossRef] [PubMed]

1992 (2)

A. Ben-David, A. P. Force, F. M. D’Amico, S. L. Emery, “The effect of a CO2 laser pulse shape on the accuracy of DIAL measurements,” J. Atmos. Oceanic Technol. 9, 520–525 (1992).
[CrossRef]

A. Ben-David, S. L. Emery, S. W. Gotoff, F. D’Amico, “High pulse repetition frequency, multiple wavelength, pulsed CO2 lidar system for atmospheric transmission and target reflectance measurements,” Appl. Opt. 31, 4224–4232 (1992).
[CrossRef] [PubMed]

1988 (1)

1987 (1)

1986 (1)

1985 (3)

1983 (2)

R. C. Harney, “Laser PRF considerations in differential absorption lidar applications,” Appl. Opt. 24, 3747–3750 (1983).
[CrossRef]

N. Menyuk, D. K. Killinger, “Assessment of relative error sources in IR DIAL measurement accuracy,” Appl. Opt. 22, 2690–2698 (1983).
[CrossRef] [PubMed]

1982 (1)

1978 (1)

1976 (1)

E. R. Murray, R. D. Hake, J. E. van der Laan, J. G. Hawley, “Atmospheric water vapor measurements with a 10 micron DIAL system,” Appl. Phys. Lett. 28, 542–543 (1976).
[CrossRef]

1973 (1)

A. J. Campillo, “Fresnel diffraction effects in the design of high-power laser systems,” J. Appl. Phys. 23, 83–85 (1973).

Ahlberg, H.

Ben-David, A.

A. Ben-David, A. P. Force, F. M. D’Amico, S. L. Emery, “The effect of a CO2 laser pulse shape on the accuracy of DIAL measurements,” J. Atmos. Oceanic Technol. 9, 520–525 (1992).
[CrossRef]

A. Ben-David, S. L. Emery, S. W. Gotoff, F. D’Amico, “High pulse repetition frequency, multiple wavelength, pulsed CO2 lidar system for atmospheric transmission and target reflectance measurements,” Appl. Opt. 31, 4224–4232 (1992).
[CrossRef] [PubMed]

Campillo, A. J.

A. J. Campillo, “Fresnel diffraction effects in the design of high-power laser systems,” J. Appl. Phys. 23, 83–85 (1973).

Carlisle, C. B.

C. B. Carlisle, J. E. van der Laan, “ADEDIS acceptance test report,” (SRI International, Menlo Park, Calif., 1992).

D’Amico, F.

D’Amico, F. M.

A. Ben-David, A. P. Force, F. M. D’Amico, S. L. Emery, “The effect of a CO2 laser pulse shape on the accuracy of DIAL measurements,” J. Atmos. Oceanic Technol. 9, 520–525 (1992).
[CrossRef]

DeFeo, W. E.

Emery, S. L.

A. Ben-David, S. L. Emery, S. W. Gotoff, F. D’Amico, “High pulse repetition frequency, multiple wavelength, pulsed CO2 lidar system for atmospheric transmission and target reflectance measurements,” Appl. Opt. 31, 4224–4232 (1992).
[CrossRef] [PubMed]

A. Ben-David, A. P. Force, F. M. D’Amico, S. L. Emery, “The effect of a CO2 laser pulse shape on the accuracy of DIAL measurements,” J. Atmos. Oceanic Technol. 9, 520–525 (1992).
[CrossRef]

Fletcher, L.

J. Leonelli, J. van der Laan, P. Holland, L. Fletcher, R. Warren, D. McPherrin, “Multiwavelength CO2 DIAL system designed for quantitative concentration measurement,” in Proceedings of the International Conference on Lasers ’89 (STS, McLean, Va., 1990), pp. 567–573.

Force, A. P.

A. Ben-David, A. P. Force, F. M. D’Amico, S. L. Emery, “The effect of a CO2 laser pulse shape on the accuracy of DIAL measurements,” J. Atmos. Oceanic Technol. 9, 520–525 (1992).
[CrossRef]

A. P. Force, D. K. Killinger, W. E. DeFeo, N. Menyuk, “Laser remote sensing of atmospheric ammonia using a CO2 lidar system,” Appl. Opt. 24, 2837–2841 (1985).
[CrossRef] [PubMed]

Gotoff, S.

P. Holland, J. van der Laan, K. Phelps, S. Gotoff, “Design of a mobile differential absorption lidar (DIAL) system,” in Proceedings of the International Conference on Lasers ’87 (STS, McLean, Va., 1988), pp. 694–695.

Gotoff, S. W.

Hake, R. D.

E. R. Murray, R. D. Hake, J. E. van der Laan, J. G. Hawley, “Atmospheric water vapor measurements with a 10 micron DIAL system,” Appl. Phys. Lett. 28, 542–543 (1976).
[CrossRef]

Harney, R. C.

R. C. Harney, “Laser PRF considerations in differential absorption lidar applications,” Appl. Opt. 24, 3747–3750 (1983).
[CrossRef]

Hawley, J. G.

E. R. Murray, R. D. Hake, J. E. van der Laan, J. G. Hawley, “Atmospheric water vapor measurements with a 10 micron DIAL system,” Appl. Phys. Lett. 28, 542–543 (1976).
[CrossRef]

J. G. Hawley, “1985 lidar test program,” Final Report, contract DAAK11-82-C-0158 (SRI International, Menlo Park, Calif., 1986).

Holland, P.

J. Leonelli, J. van der Laan, P. Holland, L. Fletcher, R. Warren, D. McPherrin, “Multiwavelength CO2 DIAL system designed for quantitative concentration measurement,” in Proceedings of the International Conference on Lasers ’89 (STS, McLean, Va., 1990), pp. 567–573.

P. Holland, J. van der Laan, K. Phelps, S. Gotoff, “Design of a mobile differential absorption lidar (DIAL) system,” in Proceedings of the International Conference on Lasers ’87 (STS, McLean, Va., 1988), pp. 694–695.

Killinger, D. K.

Lea, T. K.

Leonelli, J.

J. Leonelli, J. van der Laan, P. Holland, L. Fletcher, R. Warren, D. McPherrin, “Multiwavelength CO2 DIAL system designed for quantitative concentration measurement,” in Proceedings of the International Conference on Lasers ’89 (STS, McLean, Va., 1990), pp. 567–573.

Lundqvist, S.

McPherrin, D.

J. Leonelli, J. van der Laan, P. Holland, L. Fletcher, R. Warren, D. McPherrin, “Multiwavelength CO2 DIAL system designed for quantitative concentration measurement,” in Proceedings of the International Conference on Lasers ’89 (STS, McLean, Va., 1990), pp. 567–573.

Menyuk, N.

Murray, E. R.

E. R. Murray, J. E. van der Laan, “Remote measurement of ethylene using a CO2 differential-absorption lidar,” Appl. Opt. 17, 814–817 (1978).
[CrossRef] [PubMed]

E. R. Murray, R. D. Hake, J. E. van der Laan, J. G. Hawley, “Atmospheric water vapor measurements with a 10 micron DIAL system,” Appl. Phys. Lett. 28, 542–543 (1976).
[CrossRef]

Olsson, B.

Phelps, K.

P. Holland, J. van der Laan, K. Phelps, S. Gotoff, “Design of a mobile differential absorption lidar (DIAL) system,” in Proceedings of the International Conference on Lasers ’87 (STS, McLean, Va., 1988), pp. 694–695.

Schotland, R. M.

Uthe, E. E.

van der Laan, J.

P. Holland, J. van der Laan, K. Phelps, S. Gotoff, “Design of a mobile differential absorption lidar (DIAL) system,” in Proceedings of the International Conference on Lasers ’87 (STS, McLean, Va., 1988), pp. 694–695.

J. Leonelli, J. van der Laan, P. Holland, L. Fletcher, R. Warren, D. McPherrin, “Multiwavelength CO2 DIAL system designed for quantitative concentration measurement,” in Proceedings of the International Conference on Lasers ’89 (STS, McLean, Va., 1990), pp. 567–573.

van der Laan, J. E.

E. R. Murray, J. E. van der Laan, “Remote measurement of ethylene using a CO2 differential-absorption lidar,” Appl. Opt. 17, 814–817 (1978).
[CrossRef] [PubMed]

E. R. Murray, R. D. Hake, J. E. van der Laan, J. G. Hawley, “Atmospheric water vapor measurements with a 10 micron DIAL system,” Appl. Phys. Lett. 28, 542–543 (1976).
[CrossRef]

C. B. Carlisle, J. E. van der Laan, “ADEDIS acceptance test report,” (SRI International, Menlo Park, Calif., 1992).

Warren, R.

J. Leonelli, J. van der Laan, P. Holland, L. Fletcher, R. Warren, D. McPherrin, “Multiwavelength CO2 DIAL system designed for quantitative concentration measurement,” in Proceedings of the International Conference on Lasers ’89 (STS, McLean, Va., 1990), pp. 567–573.

Warren, R. E.

Zhao, Y.

Appl. Opt. (1)

N. Menyuk, D. K. Killinger, “Assessment of relative error sources in IR DIAL measurement accuracy,” Appl. Opt. 22, 2690–2698 (1983).
[CrossRef] [PubMed]

Appl. Opt. (10)

R. C. Harney, “Laser PRF considerations in differential absorption lidar applications,” Appl. Opt. 24, 3747–3750 (1983).
[CrossRef]

E. R. Murray, J. E. van der Laan, “Remote measurement of ethylene using a CO2 differential-absorption lidar,” Appl. Opt. 17, 814–817 (1978).
[CrossRef] [PubMed]

N. Menyuk, D. K. Killinger, W. E. DeFeo, “Laser remote sensing of hydrazine, MMH, and UDMH, using a differential-absorption CO2 lidar,” Appl. Opt. 21, 2275–2286 (1982).
[CrossRef] [PubMed]

A. P. Force, D. K. Killinger, W. E. DeFeo, N. Menyuk, “Laser remote sensing of atmospheric ammonia using a CO2 lidar system,” Appl. Opt. 24, 2837–2841 (1985).
[CrossRef] [PubMed]

R. E. Warren, “Detection and discrimination using multiple wavelength differential absorption lidar,” Appl. Opt. 24, 3541–3545 (1985).
[CrossRef] [PubMed]

H. Ahlberg, S. Lundqvist, B. Olsson, “CO2 laser long-path measurements of diffuse leakages from a petrochemical plant,” Appl. Opt. 24, 3924–3928 (1985).
[CrossRef] [PubMed]

E. E. Uthe, “Airborne CO2 DIAL measurement of atmospheric tracer gas concentration distributions,” Appl. Opt. 25, 2492–2498 (1986).
[CrossRef] [PubMed]

R. E. Warren, “Adaptive Kalman–Bucy filter for differential absorption lidar time series data,” Appl. Opt. 26, 4755–4760 (1987).
[CrossRef] [PubMed]

Y. Zhao, T. K. Lea, R. M. Schotland, “Correction function for the lidar equation and some techniques for incoherent CO2 lidar data reduction,” Appl. Opt. 27, 2730–2740 (1988).
[CrossRef] [PubMed]

A. Ben-David, S. L. Emery, S. W. Gotoff, F. D’Amico, “High pulse repetition frequency, multiple wavelength, pulsed CO2 lidar system for atmospheric transmission and target reflectance measurements,” Appl. Opt. 31, 4224–4232 (1992).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

E. R. Murray, R. D. Hake, J. E. van der Laan, J. G. Hawley, “Atmospheric water vapor measurements with a 10 micron DIAL system,” Appl. Phys. Lett. 28, 542–543 (1976).
[CrossRef]

J. Appl. Phys. (1)

A. J. Campillo, “Fresnel diffraction effects in the design of high-power laser systems,” J. Appl. Phys. 23, 83–85 (1973).

J. Atmos. Oceanic Technol. (1)

A. Ben-David, A. P. Force, F. M. D’Amico, S. L. Emery, “The effect of a CO2 laser pulse shape on the accuracy of DIAL measurements,” J. Atmos. Oceanic Technol. 9, 520–525 (1992).
[CrossRef]

Other (4)

P. Holland, J. van der Laan, K. Phelps, S. Gotoff, “Design of a mobile differential absorption lidar (DIAL) system,” in Proceedings of the International Conference on Lasers ’87 (STS, McLean, Va., 1988), pp. 694–695.

J. Leonelli, J. van der Laan, P. Holland, L. Fletcher, R. Warren, D. McPherrin, “Multiwavelength CO2 DIAL system designed for quantitative concentration measurement,” in Proceedings of the International Conference on Lasers ’89 (STS, McLean, Va., 1990), pp. 567–573.

J. G. Hawley, “1985 lidar test program,” Final Report, contract DAAK11-82-C-0158 (SRI International, Menlo Park, Calif., 1986).

C. B. Carlisle, J. E. van der Laan, “ADEDIS acceptance test report,” (SRI International, Menlo Park, Calif., 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1
Fig. 1

ADEDIS DIAL system.

Fig. 2
Fig. 2

Floor plan of ADEDIS. M-1–M-7, mirrors; D-1–D-3, diagnostic path mirrors; G-1, G-2, green He–Ne beam mirrors; BS-1, BS-1′, beam splitters; A-1, A-2, alignment diode laser beam mirrors; R-1, R-2, red He–Ne beam mirrors.

Fig. 3
Fig. 3

Transmit optics layout in DIAL package.

Fig. 4
Fig. 4

Plasma-shutter pulse clipper.

Fig. 5
Fig. 5

Scanner transceiver subassembly.

Fig. 6
Fig. 6

Data acquisition and processing subsystem layout. PRF, pulsed repetition frequency.

Fig. 7
Fig. 7

Examples of pulse clipping of 9P(20) laser line.

Fig. 8
Fig. 8

Range-resolution test setup.

Fig. 9
Fig. 9

Lidar returns from semitransparent targets separated by 20 m.

Fig. 10
Fig. 10

Layout of vapor chamber.

Fig. 11
Fig. 11

Absorption spectra of TEP, DEMP, and DIMP.

Fig. 12
Fig. 12

Test setup for the vapor-chamber trials.

Fig. 13
Fig. 13

CL versus time for TEP vapor-chamber trial.

Fig. 14
Fig. 14

Test setup for range-resolved detection trials.

Fig. 15
Fig. 15

Dissemination technique for TEP in range-resolved trials.

Fig. 16
Fig. 16

Range-resolved monitoring of the evolution of a TEP vapor cloud.

Fig. 17
Fig. 17

Test scenario for long-range vapor detection.

Fig. 18
Fig. 18

CL versus time of SF6 detection from 16 km.

Fig. 19
Fig. 19

Test setup for study of surface reflectivity effects in long-range DIAL detection.

Fig. 20
Fig. 20

Lidar signal returns from 16 km.

Tables (7)

Tables Icon

Table 1 Specifications of the ADEDIS DIAL System

Tables Icon

Table 2 ADEDIS Laser Specifications

Tables Icon

Table 3 Programmable Scanner Specifications

Tables Icon

Table 4 TEP Vapor-Chamber Trial Sequence of Events

Tables Icon

Table 5 Summary of Results from TEP Vapor-Chamber Trial

Tables Icon

Table 6 ADEDIS System Parameters for Open-Field TEP Trials

Tables Icon

Table 7 ADEDIS System Parameters for Detection of Hard-Target Returns from Lambertian and Specular Scatterer at Long Distances

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

C L = ρ liq V inj A ( mg / m 2 ) ,
σ C L = 1 2 ( Δ α ) SNR ,
σ c = 1 2 Δ α Δ R SNR ,
SNR = N D * E T c βη o exp ( 2 δ ) A 2 R 2 A d B ,
SNR 350 ,
σ c = 0 . 10 mg / m 3 ( calculated ) , σ c = 0 . 13 mg / m 3 ( measured ) .
P r = P t ρ A R 2 η o exp ( 2 δ ) ,
f = 4 × 10 14 ( Lambertian surface ) ,
P r = 2 × 10 7 W ,
SNR = 20 ,
f = f inter ( 0 . 15 6 ) exp ( 2 δ ) 0 . 5 10 9 ,

Metrics