Abstract

We report a general approach to the design of broadband waveguide couplers. A double-parallel grating assembly is used to cancel the first chromatic order, and a proper choice of prism glass and base angle is made to compensate for the second chromatic order. The technique was applied to a Corning glass 7059 waveguide, and a spectral bandwidth of 70 nm was measured by the use of two complementary procedures.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. S. Wolfbeis, “Fiber-optic sensors in biomedical sciences,” Pure Appl. Chem. 59, 663–672 (1987).
    [Crossref]
  2. R. E. Dessey, “Waveguides as chemical sensors,” Anal. Chem. 61, 1079A–1094A (1989).
  3. M. A. Arnold, “Fiber-optic chemical sensors,” Anal. Chem. 64, 1015A–1025A (1992).
  4. J. N. Polky, J. H. Harris, “Absorption from thin-film waveguides,” J. Opt. Soc. Am. 62, 1081–1087 (1972).
    [Crossref]
  5. S. S. Saavedra, W. M. Reichert, “Integrated optical attenuated total reflection spectrometry of aqueous superstrates using prism-coupled polymer waveguides,” Anal. Chem. 62, 2251–2256 (1990).
    [Crossref] [PubMed]
  6. M. D. DeGrandpre, L. W. Burgess, P. L. White, D. S. Goldman, “Thin film planar waveguide sensor for liquid phase absorbance measurements,” Anal. Chem. 62, 2012–2017 (1990).
    [Crossref]
  7. D. A. Stephens, P. W. Bohn, “Absorption spectrometry of bound monolayers on integrated optical structures,” Anal. Chem. 61, 386–390 (1989).
    [Crossref]
  8. S. S. Saavedra, W. M. Reichert, “In situ quantitation of protein adsorption density by integrated optical waveguide attenuated total reflection spectrometry,” Langmuir 7, 995–999 (1991).
    [Crossref]
  9. D. S. Walker, M. D. Garrison, W. M. Reichert, “Protein adsorption to HEMA/EMA copolymers studied by integrated optical techniques,” J. Colloid Interface Sci. 157, 41–49 (1993).
    [Crossref]
  10. T. E. Plowman, M. D. Garrison, D. S. Walker, W. M. Reichert, “Surface sensitivity of SiON integrated optical waveguides (IOWs) examined by IOW-attenuated total reflection spectrometry and IOW-Raman spectroscopy,” Thin Solid Films 243, 610–615 (1994).
    [Crossref]
  11. K. E. Spaulding, M. Morris, “Achromatic waveguide input/output coupler design,” Appl. Opt. 30, 1096–1112 (1991).
    [Crossref] [PubMed]
  12. K. E. Spaulding, M. Morris, “Achromatic waveguide couplers,” J. Lightwave Technol. 10, 1513–1518 (1992).
    [Crossref]
  13. D. L. Hetherington, R. K. Kostuk, M. C. Gupta, “Dispersion compensation for an integrated optic grating coupler utilizing a transmission volume hologram,” Appl. Opt. 32, 303–308 (1993).
    [Crossref] [PubMed]
  14. T. A. Strasser, M. C. Gupta, “Grating coupler dispersion compensation with a surface-relief reflection grating,” Appl. Opt. 33, 3220–3226 (1994).
    [Crossref] [PubMed]
  15. L. Li, J. C. Brazas, “A method for achromatically coupling a beam of light into a waveguide,” U.S. patent5,420,947 (30May1995).
  16. J. C. Brazas, L. Li, “Analysis of input-grating couplers having finite lengths,” Appl. Opt. 34, 3786–3792 (1995).
    [Crossref] [PubMed]
  17. L. Li, M. Xu, G. I. Stegeman, C. T. Seaton, “Fabrication of photoresist masks for submicrometer surface relief gratings,” in Integrated Optical Circuit Engineering V, M. A. Mentzer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.835, 72–82 (1987).

1995 (1)

1994 (2)

T. A. Strasser, M. C. Gupta, “Grating coupler dispersion compensation with a surface-relief reflection grating,” Appl. Opt. 33, 3220–3226 (1994).
[Crossref] [PubMed]

T. E. Plowman, M. D. Garrison, D. S. Walker, W. M. Reichert, “Surface sensitivity of SiON integrated optical waveguides (IOWs) examined by IOW-attenuated total reflection spectrometry and IOW-Raman spectroscopy,” Thin Solid Films 243, 610–615 (1994).
[Crossref]

1993 (2)

D. L. Hetherington, R. K. Kostuk, M. C. Gupta, “Dispersion compensation for an integrated optic grating coupler utilizing a transmission volume hologram,” Appl. Opt. 32, 303–308 (1993).
[Crossref] [PubMed]

D. S. Walker, M. D. Garrison, W. M. Reichert, “Protein adsorption to HEMA/EMA copolymers studied by integrated optical techniques,” J. Colloid Interface Sci. 157, 41–49 (1993).
[Crossref]

1992 (2)

M. A. Arnold, “Fiber-optic chemical sensors,” Anal. Chem. 64, 1015A–1025A (1992).

K. E. Spaulding, M. Morris, “Achromatic waveguide couplers,” J. Lightwave Technol. 10, 1513–1518 (1992).
[Crossref]

1991 (2)

K. E. Spaulding, M. Morris, “Achromatic waveguide input/output coupler design,” Appl. Opt. 30, 1096–1112 (1991).
[Crossref] [PubMed]

S. S. Saavedra, W. M. Reichert, “In situ quantitation of protein adsorption density by integrated optical waveguide attenuated total reflection spectrometry,” Langmuir 7, 995–999 (1991).
[Crossref]

1990 (2)

S. S. Saavedra, W. M. Reichert, “Integrated optical attenuated total reflection spectrometry of aqueous superstrates using prism-coupled polymer waveguides,” Anal. Chem. 62, 2251–2256 (1990).
[Crossref] [PubMed]

M. D. DeGrandpre, L. W. Burgess, P. L. White, D. S. Goldman, “Thin film planar waveguide sensor for liquid phase absorbance measurements,” Anal. Chem. 62, 2012–2017 (1990).
[Crossref]

1989 (2)

D. A. Stephens, P. W. Bohn, “Absorption spectrometry of bound monolayers on integrated optical structures,” Anal. Chem. 61, 386–390 (1989).
[Crossref]

R. E. Dessey, “Waveguides as chemical sensors,” Anal. Chem. 61, 1079A–1094A (1989).

1987 (1)

O. S. Wolfbeis, “Fiber-optic sensors in biomedical sciences,” Pure Appl. Chem. 59, 663–672 (1987).
[Crossref]

1972 (1)

Arnold, M. A.

M. A. Arnold, “Fiber-optic chemical sensors,” Anal. Chem. 64, 1015A–1025A (1992).

Bohn, P. W.

D. A. Stephens, P. W. Bohn, “Absorption spectrometry of bound monolayers on integrated optical structures,” Anal. Chem. 61, 386–390 (1989).
[Crossref]

Brazas, J. C.

J. C. Brazas, L. Li, “Analysis of input-grating couplers having finite lengths,” Appl. Opt. 34, 3786–3792 (1995).
[Crossref] [PubMed]

L. Li, J. C. Brazas, “A method for achromatically coupling a beam of light into a waveguide,” U.S. patent5,420,947 (30May1995).

Burgess, L. W.

M. D. DeGrandpre, L. W. Burgess, P. L. White, D. S. Goldman, “Thin film planar waveguide sensor for liquid phase absorbance measurements,” Anal. Chem. 62, 2012–2017 (1990).
[Crossref]

DeGrandpre, M. D.

M. D. DeGrandpre, L. W. Burgess, P. L. White, D. S. Goldman, “Thin film planar waveguide sensor for liquid phase absorbance measurements,” Anal. Chem. 62, 2012–2017 (1990).
[Crossref]

Dessey, R. E.

R. E. Dessey, “Waveguides as chemical sensors,” Anal. Chem. 61, 1079A–1094A (1989).

Garrison, M. D.

T. E. Plowman, M. D. Garrison, D. S. Walker, W. M. Reichert, “Surface sensitivity of SiON integrated optical waveguides (IOWs) examined by IOW-attenuated total reflection spectrometry and IOW-Raman spectroscopy,” Thin Solid Films 243, 610–615 (1994).
[Crossref]

D. S. Walker, M. D. Garrison, W. M. Reichert, “Protein adsorption to HEMA/EMA copolymers studied by integrated optical techniques,” J. Colloid Interface Sci. 157, 41–49 (1993).
[Crossref]

Goldman, D. S.

M. D. DeGrandpre, L. W. Burgess, P. L. White, D. S. Goldman, “Thin film planar waveguide sensor for liquid phase absorbance measurements,” Anal. Chem. 62, 2012–2017 (1990).
[Crossref]

Gupta, M. C.

Harris, J. H.

Hetherington, D. L.

Kostuk, R. K.

Li, L.

J. C. Brazas, L. Li, “Analysis of input-grating couplers having finite lengths,” Appl. Opt. 34, 3786–3792 (1995).
[Crossref] [PubMed]

L. Li, M. Xu, G. I. Stegeman, C. T. Seaton, “Fabrication of photoresist masks for submicrometer surface relief gratings,” in Integrated Optical Circuit Engineering V, M. A. Mentzer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.835, 72–82 (1987).

L. Li, J. C. Brazas, “A method for achromatically coupling a beam of light into a waveguide,” U.S. patent5,420,947 (30May1995).

Morris, M.

K. E. Spaulding, M. Morris, “Achromatic waveguide couplers,” J. Lightwave Technol. 10, 1513–1518 (1992).
[Crossref]

K. E. Spaulding, M. Morris, “Achromatic waveguide input/output coupler design,” Appl. Opt. 30, 1096–1112 (1991).
[Crossref] [PubMed]

Plowman, T. E.

T. E. Plowman, M. D. Garrison, D. S. Walker, W. M. Reichert, “Surface sensitivity of SiON integrated optical waveguides (IOWs) examined by IOW-attenuated total reflection spectrometry and IOW-Raman spectroscopy,” Thin Solid Films 243, 610–615 (1994).
[Crossref]

Polky, J. N.

Reichert, W. M.

T. E. Plowman, M. D. Garrison, D. S. Walker, W. M. Reichert, “Surface sensitivity of SiON integrated optical waveguides (IOWs) examined by IOW-attenuated total reflection spectrometry and IOW-Raman spectroscopy,” Thin Solid Films 243, 610–615 (1994).
[Crossref]

D. S. Walker, M. D. Garrison, W. M. Reichert, “Protein adsorption to HEMA/EMA copolymers studied by integrated optical techniques,” J. Colloid Interface Sci. 157, 41–49 (1993).
[Crossref]

S. S. Saavedra, W. M. Reichert, “In situ quantitation of protein adsorption density by integrated optical waveguide attenuated total reflection spectrometry,” Langmuir 7, 995–999 (1991).
[Crossref]

S. S. Saavedra, W. M. Reichert, “Integrated optical attenuated total reflection spectrometry of aqueous superstrates using prism-coupled polymer waveguides,” Anal. Chem. 62, 2251–2256 (1990).
[Crossref] [PubMed]

Saavedra, S. S.

S. S. Saavedra, W. M. Reichert, “In situ quantitation of protein adsorption density by integrated optical waveguide attenuated total reflection spectrometry,” Langmuir 7, 995–999 (1991).
[Crossref]

S. S. Saavedra, W. M. Reichert, “Integrated optical attenuated total reflection spectrometry of aqueous superstrates using prism-coupled polymer waveguides,” Anal. Chem. 62, 2251–2256 (1990).
[Crossref] [PubMed]

Seaton, C. T.

L. Li, M. Xu, G. I. Stegeman, C. T. Seaton, “Fabrication of photoresist masks for submicrometer surface relief gratings,” in Integrated Optical Circuit Engineering V, M. A. Mentzer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.835, 72–82 (1987).

Spaulding, K. E.

K. E. Spaulding, M. Morris, “Achromatic waveguide couplers,” J. Lightwave Technol. 10, 1513–1518 (1992).
[Crossref]

K. E. Spaulding, M. Morris, “Achromatic waveguide input/output coupler design,” Appl. Opt. 30, 1096–1112 (1991).
[Crossref] [PubMed]

Stegeman, G. I.

L. Li, M. Xu, G. I. Stegeman, C. T. Seaton, “Fabrication of photoresist masks for submicrometer surface relief gratings,” in Integrated Optical Circuit Engineering V, M. A. Mentzer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.835, 72–82 (1987).

Stephens, D. A.

D. A. Stephens, P. W. Bohn, “Absorption spectrometry of bound monolayers on integrated optical structures,” Anal. Chem. 61, 386–390 (1989).
[Crossref]

Strasser, T. A.

Walker, D. S.

T. E. Plowman, M. D. Garrison, D. S. Walker, W. M. Reichert, “Surface sensitivity of SiON integrated optical waveguides (IOWs) examined by IOW-attenuated total reflection spectrometry and IOW-Raman spectroscopy,” Thin Solid Films 243, 610–615 (1994).
[Crossref]

D. S. Walker, M. D. Garrison, W. M. Reichert, “Protein adsorption to HEMA/EMA copolymers studied by integrated optical techniques,” J. Colloid Interface Sci. 157, 41–49 (1993).
[Crossref]

White, P. L.

M. D. DeGrandpre, L. W. Burgess, P. L. White, D. S. Goldman, “Thin film planar waveguide sensor for liquid phase absorbance measurements,” Anal. Chem. 62, 2012–2017 (1990).
[Crossref]

Wolfbeis, O. S.

O. S. Wolfbeis, “Fiber-optic sensors in biomedical sciences,” Pure Appl. Chem. 59, 663–672 (1987).
[Crossref]

Xu, M.

L. Li, M. Xu, G. I. Stegeman, C. T. Seaton, “Fabrication of photoresist masks for submicrometer surface relief gratings,” in Integrated Optical Circuit Engineering V, M. A. Mentzer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.835, 72–82 (1987).

Anal. Chem. (5)

S. S. Saavedra, W. M. Reichert, “Integrated optical attenuated total reflection spectrometry of aqueous superstrates using prism-coupled polymer waveguides,” Anal. Chem. 62, 2251–2256 (1990).
[Crossref] [PubMed]

M. D. DeGrandpre, L. W. Burgess, P. L. White, D. S. Goldman, “Thin film planar waveguide sensor for liquid phase absorbance measurements,” Anal. Chem. 62, 2012–2017 (1990).
[Crossref]

D. A. Stephens, P. W. Bohn, “Absorption spectrometry of bound monolayers on integrated optical structures,” Anal. Chem. 61, 386–390 (1989).
[Crossref]

R. E. Dessey, “Waveguides as chemical sensors,” Anal. Chem. 61, 1079A–1094A (1989).

M. A. Arnold, “Fiber-optic chemical sensors,” Anal. Chem. 64, 1015A–1025A (1992).

Appl. Opt. (4)

J. Colloid Interface Sci. (1)

D. S. Walker, M. D. Garrison, W. M. Reichert, “Protein adsorption to HEMA/EMA copolymers studied by integrated optical techniques,” J. Colloid Interface Sci. 157, 41–49 (1993).
[Crossref]

J. Lightwave Technol. (1)

K. E. Spaulding, M. Morris, “Achromatic waveguide couplers,” J. Lightwave Technol. 10, 1513–1518 (1992).
[Crossref]

J. Opt. Soc. Am. (1)

Langmuir (1)

S. S. Saavedra, W. M. Reichert, “In situ quantitation of protein adsorption density by integrated optical waveguide attenuated total reflection spectrometry,” Langmuir 7, 995–999 (1991).
[Crossref]

Pure Appl. Chem. (1)

O. S. Wolfbeis, “Fiber-optic sensors in biomedical sciences,” Pure Appl. Chem. 59, 663–672 (1987).
[Crossref]

Thin Solid Films (1)

T. E. Plowman, M. D. Garrison, D. S. Walker, W. M. Reichert, “Surface sensitivity of SiON integrated optical waveguides (IOWs) examined by IOW-attenuated total reflection spectrometry and IOW-Raman spectroscopy,” Thin Solid Films 243, 610–615 (1994).
[Crossref]

Other (2)

L. Li, M. Xu, G. I. Stegeman, C. T. Seaton, “Fabrication of photoresist masks for submicrometer surface relief gratings,” in Integrated Optical Circuit Engineering V, M. A. Mentzer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.835, 72–82 (1987).

L. Li, J. C. Brazas, “A method for achromatically coupling a beam of light into a waveguide,” U.S. patent5,420,947 (30May1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic representation of overall structure and symbols used for each element.

Fig. 2
Fig. 2

Comparison of effective-index mismatch function for different incoupler designs: (a) grating coupler Λ = 313.4 nm; (b) prism coupler with LaSF3 glass and base angle 52.206°; (c) Li and Brazas15 double grating Λ a = 309.5 nm and Λ b = 308.8 nm, prism SF1 glass, base angle 60°; (d) present design, with double grating Λ a = 305.4 nm and Λ b = 313.4 nm, prism LaSF3 glass, base angle 52.206°. For all designs, the waveguide material is Corning glass 7059 with a thickness of 400 nm, the cover is air, and TE polarization is assumed. Designs (a), (b), and (d) are centered at λ0 = 550 nm, and the substrate is fused silica; for design (c) λ0 = 685 nm, and the substrate is pyrex.

Fig. 3
Fig. 3

Measured index of refraction versus wavelength for several Corning glass 7059 films fabricated by the use of sputtering deposition.

Fig. 4
Fig. 4

Experimental setup for coupling-efficiency measurements.

Fig. 5
Fig. 5

Dependence of coupling efficiency on angle of incidence for A, our achromatic waveguide coupler at three particular wavelengths, λ = 525, 550, and 580 nm, and B, a conventional grating coupler at three particular wavelengths, λ = 545, 550, and 555 nm.

Fig. 6
Fig. 6

Normalized coupling efficiency for an achromatic coupler as a function of wavelength. Experimental results (♦) and theoretical calculation (solid curve) are shown without consideration of lateral shift effects.

Fig. 7
Fig. 7

Schematic representation of lateral shift for different wavelengths.

Tables (1)

Tables Icon

Table 1 Normalized Coupling Efficiency for Each Limiting Case

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

F ( λ ) N w ( λ ) N p ( λ ) N g ( λ ) ,
2 π λ t w ( n w 2 N w 2 ) 1 / 2 = m π + tan 1 [ ( n w n c ) 2 ρ ( N w 2 n c 2 n w 2 N w 2 ) 1 / 2 ] + tan 1 [ ( n w n s ) 2 ρ ( N w 2 n s 2 n w 2 N w 2 ) 1 / 2 ] ,
N g = m a λ Λ a + m b λ Λ b λ Λ * ,
N p = n i sin θ i cos φ + ( n p 2 n i 2 sin 2 θ i ) 1 / 2 sin φ .
F ( λ ) F ( λ 0 ) + d F d λ | λ 0 ( λ λ 0 ) + d 2 F d λ 2 | λ 0 ( λ λ 0 ) 2 2 + O ( Δ λ 3 ) .
F ( λ 0 ) = N w n i sin θ i cos φ ( n p 2 n i 2 sin 2 θ i ) 1 / 2 × sin φ λ 0 Λ * = 0 ,
d F d λ | λ 0 = d N w d λ n p sin φ ( n p 2 n i 2 sin 2 θ i ) 1 / 2 d n p d λ 1 Λ * = 0 ,
d 2 F d λ 2 | λ 0 = d 2 N w d λ 2 n p sin φ ( n p 2 n i 2 sin 2 θ i ) 1 / 2 d 2 n p d λ 2 + n i 2 sin 2 θ i sin φ ( n p 2 n i 2 sin 2 θ i ) 3 / 2 ( d n p d λ ) 2 = 0 .
F ( λ , θ i ) = 0 ,
d θ i d λ = F / λ F / θ i .
Δ λ 50 % = Δ θ 50 % | F / θ i F / λ | = Δ θ 50 % | d θ i / d λ | ,

Metrics