Abstract

We report on the development of an automated digital speckle system for use in the nondestructive testing of thermally stressed ceramics. The system is based on a laser-speckle technique known as speckle-pattern correlation and uses a CCD camera and a microcomputer to allow real-time testing of the ceramic samples. This arrangement makes use of decorrelation in the laser speckle image structure, which results from microstructural changes in the surface topology, to probe for surface defects on the thermally stressed materials. A correlation tracking procedure was used to allow corrections to be made to the correlation signal arising from bulk motion of the sample. Results are presented that demonstrate the capability of the correlator for distinguishing between ceramic components on the basis of their response to thermal loading.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Bell, “Nondestructive testing of refractories,” Br. Ceram. Trans. J. 88, 133–137 (1989).
  2. E. G. Butler, “Engineering ceramics: applications and testing requirements,” Int. J. High Tech Ceram. 4, 93–102 (1988).
    [CrossRef]
  3. W. N. Reynolds, “Radiographic, ultrasonic and infrared NDT techniques for ceramics,” Br. Ceram. Trans. 88, 124–126 (1989).
  4. D. Cotter, W. D. Koenigsberg, A. E. Pasto, L. J. Bowen, “Predicting failure stress of silicon nitride ceramics using microfocus radiography,” Commun. Am. Ceram. Soc. 71, C-460–C-461 (1988).
    [CrossRef]
  5. M. Hefetz, S. I. Rokhlin, “Thermal shock damage assessment in ceramics using ultrasonic waves,” J. Am. Ceram. Soc. 75, 1839–1845 (1991).
    [CrossRef]
  6. F. McLysaght, J. A. Slevin, “Holographic evaluation of ceramic materials,” Appl. Opt. 30, 780–787 (1991).
    [CrossRef] [PubMed]
  7. I. Yamaguchi, “Advances in laser speckle strain gauges,” Opt. Eng. 27, 214–218 (1988).
  8. T. Takemori, F. Fujita, I. Yamaguchi, “Resolution improvement in speckle displacement and stain sensor by correlation interpolation,” in Laser Interferometry IV: Computer-aided Interferometry, R. J. Pryputniewicz, ed., Proc. Soc. Photo-OPt. Instrum. Eng.1553, 137–148 (1992).
  9. D. D. Duncan, F. F. Mark, L. W. Hunter, “New speckle technique for measurement of small creep rates,” Opt. Eng. 31, 1583–1588 (1992).
    [CrossRef]
  10. G. Groh, “Engineering uses of laser-produced speckle patterns,” Engineering Uses of Holography, E. R. Robertson, J. M. Harvey, ed. (Cambridge U. Press, Cambridge, UK, 1970), pp. 483–495.
  11. E. Marom, “Holographic correlation,” in Holographic Nondestructive Testing, R. K. Erf, ed. (Academic, New York, 1974), Chap. 6.
  12. J. W. Goodman, “Statistical properties of laser speckle,” in Laser Speckle and Related Phenomena, J. Dainty, ed. (Springer-Verlag, New York, 1984), Chap. 2, pp. 9–75.
  13. D. Coburn, J. A. Slevin, “Development of a digital correlation system for use in the nondestructive testing of advanced engineering ceramics,” in Engineered Materials, S. Hampshire, M. Buggy, A. J. Carr, eds. (Trans Tech, Aedermannsdurf, Switzerland, 1992), pp. 237–244.
  14. R. Jones, K. Wykes, Holographic and Speckle Interferometry, (Cambridge U. Press, Cambridge, UK, 1983), Chap. 2, pp. 64–121.
  15. I. Yamaguchi, “Speckle displacement and decorrelation in the diffraction and image fields for small object displacements,” Opt. Acta 28, 1359–1376 (1981).
    [CrossRef]
  16. S. Noh, I. Yamaguchi, “Two-dimensional measurement of strain distribution by speckle correlation,” Jpn. J. Appl. Phys. 31, 1299–1301 (1992).
    [CrossRef]
  17. A. Ogiwara, H. Sakai, J. Ohtsubo, “Application of the optical RAM detector in speckle metrology,” Meas. Sci. Technol. 3, 1174–1178 (1992).
    [CrossRef]
  18. S. Hampshire, “The role of additives in the pressureless sintering of nitrogen ceramics for engineering applications,” Ir. Mater. Forum 7, 162–170 (1984).
  19. G. Ziegler, J. Heinrich, B. Wötting, “Relationship between processing, microstructure and properties of dense and reaction bonded silicon nitride,” J. Mater. Sci. 22, 3041–3086 (1987).
    [CrossRef]

1992 (3)

D. D. Duncan, F. F. Mark, L. W. Hunter, “New speckle technique for measurement of small creep rates,” Opt. Eng. 31, 1583–1588 (1992).
[CrossRef]

S. Noh, I. Yamaguchi, “Two-dimensional measurement of strain distribution by speckle correlation,” Jpn. J. Appl. Phys. 31, 1299–1301 (1992).
[CrossRef]

A. Ogiwara, H. Sakai, J. Ohtsubo, “Application of the optical RAM detector in speckle metrology,” Meas. Sci. Technol. 3, 1174–1178 (1992).
[CrossRef]

1991 (2)

F. McLysaght, J. A. Slevin, “Holographic evaluation of ceramic materials,” Appl. Opt. 30, 780–787 (1991).
[CrossRef] [PubMed]

M. Hefetz, S. I. Rokhlin, “Thermal shock damage assessment in ceramics using ultrasonic waves,” J. Am. Ceram. Soc. 75, 1839–1845 (1991).
[CrossRef]

1989 (2)

D. A. Bell, “Nondestructive testing of refractories,” Br. Ceram. Trans. J. 88, 133–137 (1989).

W. N. Reynolds, “Radiographic, ultrasonic and infrared NDT techniques for ceramics,” Br. Ceram. Trans. 88, 124–126 (1989).

1988 (3)

D. Cotter, W. D. Koenigsberg, A. E. Pasto, L. J. Bowen, “Predicting failure stress of silicon nitride ceramics using microfocus radiography,” Commun. Am. Ceram. Soc. 71, C-460–C-461 (1988).
[CrossRef]

E. G. Butler, “Engineering ceramics: applications and testing requirements,” Int. J. High Tech Ceram. 4, 93–102 (1988).
[CrossRef]

I. Yamaguchi, “Advances in laser speckle strain gauges,” Opt. Eng. 27, 214–218 (1988).

1987 (1)

G. Ziegler, J. Heinrich, B. Wötting, “Relationship between processing, microstructure and properties of dense and reaction bonded silicon nitride,” J. Mater. Sci. 22, 3041–3086 (1987).
[CrossRef]

1984 (1)

S. Hampshire, “The role of additives in the pressureless sintering of nitrogen ceramics for engineering applications,” Ir. Mater. Forum 7, 162–170 (1984).

1981 (1)

I. Yamaguchi, “Speckle displacement and decorrelation in the diffraction and image fields for small object displacements,” Opt. Acta 28, 1359–1376 (1981).
[CrossRef]

Bell, D. A.

D. A. Bell, “Nondestructive testing of refractories,” Br. Ceram. Trans. J. 88, 133–137 (1989).

Bowen, L. J.

D. Cotter, W. D. Koenigsberg, A. E. Pasto, L. J. Bowen, “Predicting failure stress of silicon nitride ceramics using microfocus radiography,” Commun. Am. Ceram. Soc. 71, C-460–C-461 (1988).
[CrossRef]

Butler, E. G.

E. G. Butler, “Engineering ceramics: applications and testing requirements,” Int. J. High Tech Ceram. 4, 93–102 (1988).
[CrossRef]

Coburn, D.

D. Coburn, J. A. Slevin, “Development of a digital correlation system for use in the nondestructive testing of advanced engineering ceramics,” in Engineered Materials, S. Hampshire, M. Buggy, A. J. Carr, eds. (Trans Tech, Aedermannsdurf, Switzerland, 1992), pp. 237–244.

Cotter, D.

D. Cotter, W. D. Koenigsberg, A. E. Pasto, L. J. Bowen, “Predicting failure stress of silicon nitride ceramics using microfocus radiography,” Commun. Am. Ceram. Soc. 71, C-460–C-461 (1988).
[CrossRef]

Duncan, D. D.

D. D. Duncan, F. F. Mark, L. W. Hunter, “New speckle technique for measurement of small creep rates,” Opt. Eng. 31, 1583–1588 (1992).
[CrossRef]

Fujita, F.

T. Takemori, F. Fujita, I. Yamaguchi, “Resolution improvement in speckle displacement and stain sensor by correlation interpolation,” in Laser Interferometry IV: Computer-aided Interferometry, R. J. Pryputniewicz, ed., Proc. Soc. Photo-OPt. Instrum. Eng.1553, 137–148 (1992).

Goodman, J. W.

J. W. Goodman, “Statistical properties of laser speckle,” in Laser Speckle and Related Phenomena, J. Dainty, ed. (Springer-Verlag, New York, 1984), Chap. 2, pp. 9–75.

Groh, G.

G. Groh, “Engineering uses of laser-produced speckle patterns,” Engineering Uses of Holography, E. R. Robertson, J. M. Harvey, ed. (Cambridge U. Press, Cambridge, UK, 1970), pp. 483–495.

Hampshire, S.

S. Hampshire, “The role of additives in the pressureless sintering of nitrogen ceramics for engineering applications,” Ir. Mater. Forum 7, 162–170 (1984).

Hefetz, M.

M. Hefetz, S. I. Rokhlin, “Thermal shock damage assessment in ceramics using ultrasonic waves,” J. Am. Ceram. Soc. 75, 1839–1845 (1991).
[CrossRef]

Heinrich, J.

G. Ziegler, J. Heinrich, B. Wötting, “Relationship between processing, microstructure and properties of dense and reaction bonded silicon nitride,” J. Mater. Sci. 22, 3041–3086 (1987).
[CrossRef]

Hunter, L. W.

D. D. Duncan, F. F. Mark, L. W. Hunter, “New speckle technique for measurement of small creep rates,” Opt. Eng. 31, 1583–1588 (1992).
[CrossRef]

Jones, R.

R. Jones, K. Wykes, Holographic and Speckle Interferometry, (Cambridge U. Press, Cambridge, UK, 1983), Chap. 2, pp. 64–121.

Koenigsberg, W. D.

D. Cotter, W. D. Koenigsberg, A. E. Pasto, L. J. Bowen, “Predicting failure stress of silicon nitride ceramics using microfocus radiography,” Commun. Am. Ceram. Soc. 71, C-460–C-461 (1988).
[CrossRef]

Mark, F. F.

D. D. Duncan, F. F. Mark, L. W. Hunter, “New speckle technique for measurement of small creep rates,” Opt. Eng. 31, 1583–1588 (1992).
[CrossRef]

Marom, E.

E. Marom, “Holographic correlation,” in Holographic Nondestructive Testing, R. K. Erf, ed. (Academic, New York, 1974), Chap. 6.

McLysaght, F.

Noh, S.

S. Noh, I. Yamaguchi, “Two-dimensional measurement of strain distribution by speckle correlation,” Jpn. J. Appl. Phys. 31, 1299–1301 (1992).
[CrossRef]

Ogiwara, A.

A. Ogiwara, H. Sakai, J. Ohtsubo, “Application of the optical RAM detector in speckle metrology,” Meas. Sci. Technol. 3, 1174–1178 (1992).
[CrossRef]

Ohtsubo, J.

A. Ogiwara, H. Sakai, J. Ohtsubo, “Application of the optical RAM detector in speckle metrology,” Meas. Sci. Technol. 3, 1174–1178 (1992).
[CrossRef]

Pasto, A. E.

D. Cotter, W. D. Koenigsberg, A. E. Pasto, L. J. Bowen, “Predicting failure stress of silicon nitride ceramics using microfocus radiography,” Commun. Am. Ceram. Soc. 71, C-460–C-461 (1988).
[CrossRef]

Reynolds, W. N.

W. N. Reynolds, “Radiographic, ultrasonic and infrared NDT techniques for ceramics,” Br. Ceram. Trans. 88, 124–126 (1989).

Rokhlin, S. I.

M. Hefetz, S. I. Rokhlin, “Thermal shock damage assessment in ceramics using ultrasonic waves,” J. Am. Ceram. Soc. 75, 1839–1845 (1991).
[CrossRef]

Sakai, H.

A. Ogiwara, H. Sakai, J. Ohtsubo, “Application of the optical RAM detector in speckle metrology,” Meas. Sci. Technol. 3, 1174–1178 (1992).
[CrossRef]

Slevin, J. A.

F. McLysaght, J. A. Slevin, “Holographic evaluation of ceramic materials,” Appl. Opt. 30, 780–787 (1991).
[CrossRef] [PubMed]

D. Coburn, J. A. Slevin, “Development of a digital correlation system for use in the nondestructive testing of advanced engineering ceramics,” in Engineered Materials, S. Hampshire, M. Buggy, A. J. Carr, eds. (Trans Tech, Aedermannsdurf, Switzerland, 1992), pp. 237–244.

Takemori, T.

T. Takemori, F. Fujita, I. Yamaguchi, “Resolution improvement in speckle displacement and stain sensor by correlation interpolation,” in Laser Interferometry IV: Computer-aided Interferometry, R. J. Pryputniewicz, ed., Proc. Soc. Photo-OPt. Instrum. Eng.1553, 137–148 (1992).

Wötting, B.

G. Ziegler, J. Heinrich, B. Wötting, “Relationship between processing, microstructure and properties of dense and reaction bonded silicon nitride,” J. Mater. Sci. 22, 3041–3086 (1987).
[CrossRef]

Wykes, K.

R. Jones, K. Wykes, Holographic and Speckle Interferometry, (Cambridge U. Press, Cambridge, UK, 1983), Chap. 2, pp. 64–121.

Yamaguchi, I.

S. Noh, I. Yamaguchi, “Two-dimensional measurement of strain distribution by speckle correlation,” Jpn. J. Appl. Phys. 31, 1299–1301 (1992).
[CrossRef]

I. Yamaguchi, “Advances in laser speckle strain gauges,” Opt. Eng. 27, 214–218 (1988).

I. Yamaguchi, “Speckle displacement and decorrelation in the diffraction and image fields for small object displacements,” Opt. Acta 28, 1359–1376 (1981).
[CrossRef]

T. Takemori, F. Fujita, I. Yamaguchi, “Resolution improvement in speckle displacement and stain sensor by correlation interpolation,” in Laser Interferometry IV: Computer-aided Interferometry, R. J. Pryputniewicz, ed., Proc. Soc. Photo-OPt. Instrum. Eng.1553, 137–148 (1992).

Ziegler, G.

G. Ziegler, J. Heinrich, B. Wötting, “Relationship between processing, microstructure and properties of dense and reaction bonded silicon nitride,” J. Mater. Sci. 22, 3041–3086 (1987).
[CrossRef]

Appl. Opt. (1)

Br. Ceram. Trans. (1)

W. N. Reynolds, “Radiographic, ultrasonic and infrared NDT techniques for ceramics,” Br. Ceram. Trans. 88, 124–126 (1989).

Br. Ceram. Trans. J. (1)

D. A. Bell, “Nondestructive testing of refractories,” Br. Ceram. Trans. J. 88, 133–137 (1989).

Commun. Am. Ceram. Soc. (1)

D. Cotter, W. D. Koenigsberg, A. E. Pasto, L. J. Bowen, “Predicting failure stress of silicon nitride ceramics using microfocus radiography,” Commun. Am. Ceram. Soc. 71, C-460–C-461 (1988).
[CrossRef]

Int. J. High Tech Ceram. (1)

E. G. Butler, “Engineering ceramics: applications and testing requirements,” Int. J. High Tech Ceram. 4, 93–102 (1988).
[CrossRef]

Ir. Mater. Forum (1)

S. Hampshire, “The role of additives in the pressureless sintering of nitrogen ceramics for engineering applications,” Ir. Mater. Forum 7, 162–170 (1984).

J. Am. Ceram. Soc. (1)

M. Hefetz, S. I. Rokhlin, “Thermal shock damage assessment in ceramics using ultrasonic waves,” J. Am. Ceram. Soc. 75, 1839–1845 (1991).
[CrossRef]

J. Mater. Sci. (1)

G. Ziegler, J. Heinrich, B. Wötting, “Relationship between processing, microstructure and properties of dense and reaction bonded silicon nitride,” J. Mater. Sci. 22, 3041–3086 (1987).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. Noh, I. Yamaguchi, “Two-dimensional measurement of strain distribution by speckle correlation,” Jpn. J. Appl. Phys. 31, 1299–1301 (1992).
[CrossRef]

Meas. Sci. Technol. (1)

A. Ogiwara, H. Sakai, J. Ohtsubo, “Application of the optical RAM detector in speckle metrology,” Meas. Sci. Technol. 3, 1174–1178 (1992).
[CrossRef]

Opt. Acta (1)

I. Yamaguchi, “Speckle displacement and decorrelation in the diffraction and image fields for small object displacements,” Opt. Acta 28, 1359–1376 (1981).
[CrossRef]

Opt. Eng. (2)

I. Yamaguchi, “Advances in laser speckle strain gauges,” Opt. Eng. 27, 214–218 (1988).

D. D. Duncan, F. F. Mark, L. W. Hunter, “New speckle technique for measurement of small creep rates,” Opt. Eng. 31, 1583–1588 (1992).
[CrossRef]

Other (6)

G. Groh, “Engineering uses of laser-produced speckle patterns,” Engineering Uses of Holography, E. R. Robertson, J. M. Harvey, ed. (Cambridge U. Press, Cambridge, UK, 1970), pp. 483–495.

E. Marom, “Holographic correlation,” in Holographic Nondestructive Testing, R. K. Erf, ed. (Academic, New York, 1974), Chap. 6.

J. W. Goodman, “Statistical properties of laser speckle,” in Laser Speckle and Related Phenomena, J. Dainty, ed. (Springer-Verlag, New York, 1984), Chap. 2, pp. 9–75.

D. Coburn, J. A. Slevin, “Development of a digital correlation system for use in the nondestructive testing of advanced engineering ceramics,” in Engineered Materials, S. Hampshire, M. Buggy, A. J. Carr, eds. (Trans Tech, Aedermannsdurf, Switzerland, 1992), pp. 237–244.

R. Jones, K. Wykes, Holographic and Speckle Interferometry, (Cambridge U. Press, Cambridge, UK, 1983), Chap. 2, pp. 64–121.

T. Takemori, F. Fujita, I. Yamaguchi, “Resolution improvement in speckle displacement and stain sensor by correlation interpolation,” in Laser Interferometry IV: Computer-aided Interferometry, R. J. Pryputniewicz, ed., Proc. Soc. Photo-OPt. Instrum. Eng.1553, 137–148 (1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Basic geometry of the Fresnel speckle correlator.

Fig. 2
Fig. 2

Displacement of the cross-correlation peak as the object is moved in a plane along the y axis of the Fresnel speckle arrangement: (a) the autocorrelation function of the speckle corresponding to the cross-correlation function of the system with no movement of the sample; (b) the correlation peak after an in-plane displacement of 18.4 μm.

Fig. 3
Fig. 3

Basic setup of the digital correlator system.

Fig. 4
Fig. 4

(a) Graph of the tracked speckle displacement in the y direction as a function of the object displacement obtained by the displacement tracking procedure. The dashed line represents the theoretical displacement expressions derived by Yamaguchi.15 (b) The peak-correlation signal as a function of speckle-image displacement for both the tracked (solid curve) and the nontracked (dashed curve) correlation procedure.

Fig. 5
Fig. 5

(a) Correlator response for a thermally stressed fused-quartz sample. During testing the quartz sample was stressed with a temperature difference of 500 °C. (b) The displacement of the cross-correlation peak as a function of time.

Fig. 6
Fig. 6

Correlator response for an yttria sample (YT-2) thermally loaded for temperature differences of 300, 400, and 500 °C.

Fig. 7
Fig. 7

Interpolated correlation values surrounding the correlation peak, which indicates the correlation recovery level after thermal stressing of the yttria sample at a download temperature of 500 °C.

Fig. 8
Fig. 8

Correlation response of a neodymia sample (ND-3) tested under varying thermal-load conditions. During testing the sample was heated to temperatures of 300, 400, and 500 °C, as shown by the data.

Fig. 9
Fig. 9

Correlation-signal response of the four yttria samples heated to a temperature of 500 °C for 1 min before cooling.

Fig. 10
Fig. 10

Correlator-signal response for the four ND samples tested under identical conditions by heating of the ceramics to 500 °C for 1 min.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R f , g = x 0 , y 0 I f ( x 0 , y 0 ) I g ( x 0 , y 0 ) d x 0 d y 0 .
R f , g | I f , g ( ξ , η ) | 2 d ξ d η ,
I f , g ( ξ , η ) = x 0 , y 0 f ( x 0 , y 0 ) g * ( x 0 + ξ , y 0 + η ) d x 0 d y 0 .
r 1 , 2 [ i , j ] = x , y I 1 [ x , y ] I 2 [ x + i , y + j ]

Metrics