G. P. Box, K. M. Sealey, M. A. Box, “Inversion of Mie extinction measurements using analytic eigenfunction theory,” J. Atmos. Sci. 49, 2074–2081 (1992).

[CrossRef]

A. Bassini, S. Musazzi, E. Paganini, U. Perini, F. Ferri, M. Giglio, “Optical particle sizer based on the Chahine inversion scheme,” Opt. Eng. 31, 1112–1117 (1992).

[CrossRef]

M. Bertero, C. De Mol, E. R. Pike, “Particle size distributions from spectral turbidity: a singular-system analysis,” Inverse Problems 2, 247–258 (1986).

[CrossRef]

E. Trakhovsky, S. G. Lipson, A. D. Devir, “Atmospheric aerosols investigated by inversion of experimental transmittance data,” Appl. Opt. 21, 3005–3010 (1982).

[CrossRef]
[PubMed]

J. G. Crump, J. H. Seinfeld, “A new algorithm for inversion of aerosol size distribution data,” Aerosol Sci. Technol. 1, 15–34 (1982).

E. E. Uthe, “Particle-size evaluations using multiwavelength extinction measurements,” Appl. Opt. 21, 454–459 (1982).

[CrossRef]
[PubMed]

N. Wolfson, J. H. Joseph, Y. Mekler, “Comparative study of inversion techniques. Part I: Accuracy and stability,” J. Appl. Meteorol. 18, 543–555 (1979).

[CrossRef]

N. Wolfson, Y. Mekler, J. H. Joseph, “Comparative study of inversion techniques. Part II: Resolving power, conservation of normalization and superposition principles,” J. Appl. Meteorol. 18, 556–561 (1979).

[CrossRef]

J. G. McWhirter, E. R. Pike, “On the numerical inversion of the Laplace transform and similar Fredholm integral equations of the first kind,” J. Phys. A 11, 1729–1745 (1978).

[CrossRef]

M. D. King, D. M. Byrne, B. M. Herman, J. A. Reagan, “Aerosol size distributions obtained by inversion of spectral optical depth measurements,” J. Atmos. Sci. 35, 2153–2167 (1978).

[CrossRef]

S. Twomey, “Comparison of constrained linear inversion and an iterative nonlinear algorithm applied to the indirect estimation of particle size distributions,” J. Comput. Phys. 18, 188–200 (1975).

[CrossRef]

L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745–754 (1974).

[CrossRef]

G. E. Shaw, “Intercomparison of equatorial and polar multiwavelength atmospheric optical depths and sky radiance,” Bull. Am. Meteorol. Soc. 54, 1073–1080 (1973).

M. T. Chahine, “Inverse problems in radiative transfer: determination of atmospheric parameters,” J. Atmos. Sci. 27, 960–967 (1970).

[CrossRef]

H. Quenzel, “Determination of size distribution of atmospheric aerosol particles from spectral solar radiation measurements,” J. Geophys. Res. 75, 2915–2921 (1970).

[CrossRef]

S. Twomey, “The application of numerical filtering to the solution of integral equations encountered in indirect sensing measurements,” J. Franklin Inst. 279, No. 2, 95–109 (1965).

[CrossRef]

S. Twomey, “On the numerical solution of Fredholm integral equations of the first kind by the inversion of the linear system produced by quadrature,” J. Assoc. Comput. Mach. 10, 97–101 (1963).

[CrossRef]

D. L. Phillips, “A technique for the numerical solution of certain integral equations of the first kind,” J. Assoc. Comput. Mach. 9, 84–97 (1962).

[CrossRef]

A. Ångström, “On the atmospheric transmission of sun radiation and on dust in the air,” Geogr. Ann. 11, 156–166 (1929).

[CrossRef]

A. Ångström, “On the atmospheric transmission of sun radiation and on dust in the air,” Geogr. Ann. 11, 156–166 (1929).

[CrossRef]

G. E. Backus, J. F. Gilbert, “Numerical applications of a formalism for geophysical inverse problems,” Geophys. J. R. Astron. Soc. 13, 247–276 (1967).

[CrossRef]

A. Bassini, S. Musazzi, E. Paganini, U. Perini, F. Ferri, M. Giglio, “Optical particle sizer based on the Chahine inversion scheme,” Opt. Eng. 31, 1112–1117 (1992).

[CrossRef]

M. Bertero, C. De Mol, E. R. Pike, “Particle size distributions from spectral turbidity: a singular-system analysis,” Inverse Problems 2, 247–258 (1986).

[CrossRef]

M. Bertero, C. De Mol, E. R. Pike, “Particle sizing by inversion of extinction data,” in Ref. 2, pp. 55–61.

C. F. Bohren, D. R. Hufman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), p. 77.

G. P. Box, K. M. Sealey, M. A. Box, “Inversion of Mie extinction measurements using analytic eigenfunction theory,” J. Atmos. Sci. 49, 2074–2081 (1992).

[CrossRef]

M. D. King, D. M. Byrne, B. M. Herman, J. A. Reagan, “Aerosol size distributions obtained by inversion of spectral optical depth measurements,” J. Atmos. Sci. 35, 2153–2167 (1978).

[CrossRef]

J. G. Crump, J. H. Seinfeld, “A new algorithm for inversion of aerosol size distribution data,” Aerosol Sci. Technol. 1, 15–34 (1982).

M. Bertero, C. De Mol, E. R. Pike, “Particle size distributions from spectral turbidity: a singular-system analysis,” Inverse Problems 2, 247–258 (1986).

[CrossRef]

M. Bertero, C. De Mol, E. R. Pike, “Particle sizing by inversion of extinction data,” in Ref. 2, pp. 55–61.

A. Bassini, S. Musazzi, E. Paganini, U. Perini, F. Ferri, M. Giglio, “Optical particle sizer based on the Chahine inversion scheme,” Opt. Eng. 31, 1112–1117 (1992).

[CrossRef]

F. Ferri, M. Giglio, U. Perini, “Inversion of light scattered data from fractals by means of the Chahine iterative algorithm,” Appl. Opt. 28, 3074–3082 (1989).

[CrossRef]
[PubMed]

A. Bassini, S. Musazzi, E. Paganini, U. Perini, F. Ferri, M. Giglio, “Optical particle sizer based on the Chahine inversion scheme,” Opt. Eng. 31, 1112–1117 (1992).

[CrossRef]

F. Ferri, M. Giglio, U. Perini, “Inversion of light scattered data from fractals by means of the Chahine iterative algorithm,” Appl. Opt. 28, 3074–3082 (1989).

[CrossRef]
[PubMed]

G. E. Backus, J. F. Gilbert, “Numerical applications of a formalism for geophysical inverse problems,” Geophys. J. R. Astron. Soc. 13, 247–276 (1967).

[CrossRef]

M. D. King, D. M. Byrne, B. M. Herman, J. A. Reagan, “Aerosol size distributions obtained by inversion of spectral optical depth measurements,” J. Atmos. Sci. 35, 2153–2167 (1978).

[CrossRef]

C. F. Bohren, D. R. Hufman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), p. 77.

N. Wolfson, Y. Mekler, J. H. Joseph, “Comparative study of inversion techniques. Part II: Resolving power, conservation of normalization and superposition principles,” J. Appl. Meteorol. 18, 556–561 (1979).

[CrossRef]

N. Wolfson, J. H. Joseph, Y. Mekler, “Comparative study of inversion techniques. Part I: Accuracy and stability,” J. Appl. Meteorol. 18, 543–555 (1979).

[CrossRef]

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969), Chap. 7.

M. D. King, D. M. Byrne, B. M. Herman, J. A. Reagan, “Aerosol size distributions obtained by inversion of spectral optical depth measurements,” J. Atmos. Sci. 35, 2153–2167 (1978).

[CrossRef]

L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745–754 (1974).

[CrossRef]

J. G. McWhirter, E. R. Pike, “On the numerical inversion of the Laplace transform and similar Fredholm integral equations of the first kind,” J. Phys. A 11, 1729–1745 (1978).

[CrossRef]

N. Wolfson, Y. Mekler, J. H. Joseph, “Comparative study of inversion techniques. Part II: Resolving power, conservation of normalization and superposition principles,” J. Appl. Meteorol. 18, 556–561 (1979).

[CrossRef]

N. Wolfson, J. H. Joseph, Y. Mekler, “Comparative study of inversion techniques. Part I: Accuracy and stability,” J. Appl. Meteorol. 18, 543–555 (1979).

[CrossRef]

A. Bassini, S. Musazzi, E. Paganini, U. Perini, F. Ferri, M. Giglio, “Optical particle sizer based on the Chahine inversion scheme,” Opt. Eng. 31, 1112–1117 (1992).

[CrossRef]

A. Bassini, S. Musazzi, E. Paganini, U. Perini, F. Ferri, M. Giglio, “Optical particle sizer based on the Chahine inversion scheme,” Opt. Eng. 31, 1112–1117 (1992).

[CrossRef]

A. Bassini, S. Musazzi, E. Paganini, U. Perini, F. Ferri, M. Giglio, “Optical particle sizer based on the Chahine inversion scheme,” Opt. Eng. 31, 1112–1117 (1992).

[CrossRef]

F. Ferri, M. Giglio, U. Perini, “Inversion of light scattered data from fractals by means of the Chahine iterative algorithm,” Appl. Opt. 28, 3074–3082 (1989).

[CrossRef]
[PubMed]

D. L. Phillips, “A technique for the numerical solution of certain integral equations of the first kind,” J. Assoc. Comput. Mach. 9, 84–97 (1962).

[CrossRef]

M. Bertero, C. De Mol, E. R. Pike, “Particle size distributions from spectral turbidity: a singular-system analysis,” Inverse Problems 2, 247–258 (1986).

[CrossRef]

J. G. McWhirter, E. R. Pike, “On the numerical inversion of the Laplace transform and similar Fredholm integral equations of the first kind,” J. Phys. A 11, 1729–1745 (1978).

[CrossRef]

M. Bertero, C. De Mol, E. R. Pike, “Particle sizing by inversion of extinction data,” in Ref. 2, pp. 55–61.

H. Quenzel, “Determination of size distribution of atmospheric aerosol particles from spectral solar radiation measurements,” J. Geophys. Res. 75, 2915–2921 (1970).

[CrossRef]

M. D. King, D. M. Byrne, B. M. Herman, J. A. Reagan, “Aerosol size distributions obtained by inversion of spectral optical depth measurements,” J. Atmos. Sci. 35, 2153–2167 (1978).

[CrossRef]

G. P. Box, K. M. Sealey, M. A. Box, “Inversion of Mie extinction measurements using analytic eigenfunction theory,” J. Atmos. Sci. 49, 2074–2081 (1992).

[CrossRef]

J. G. Crump, J. H. Seinfeld, “A new algorithm for inversion of aerosol size distribution data,” Aerosol Sci. Technol. 1, 15–34 (1982).

G. E. Shaw, “Intercomparison of equatorial and polar multiwavelength atmospheric optical depths and sky radiance,” Bull. Am. Meteorol. Soc. 54, 1073–1080 (1973).

S. Twomey, “Comparison of constrained linear inversion and an iterative nonlinear algorithm applied to the indirect estimation of particle size distributions,” J. Comput. Phys. 18, 188–200 (1975).

[CrossRef]

S. Twomey, H. B. Howell, “Some aspects of the optical estimation of microstructure in fog and cloud,” Appl. Opt. 6, 2125–2131 (1967).

[CrossRef]
[PubMed]

S. Twomey, “The application of numerical filtering to the solution of integral equations encountered in indirect sensing measurements,” J. Franklin Inst. 279, No. 2, 95–109 (1965).

[CrossRef]

S. Twomey, “On the numerical solution of Fredholm integral equations of the first kind by the inversion of the linear system produced by quadrature,” J. Assoc. Comput. Mach. 10, 97–101 (1963).

[CrossRef]

S. Twomey, Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements (Elsevier, Amsterdam, 1977), Chap. 7, p. 179.

H. C. Van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981), Chap. 9, p. 127.

N. Wolfson, J. H. Joseph, Y. Mekler, “Comparative study of inversion techniques. Part I: Accuracy and stability,” J. Appl. Meteorol. 18, 543–555 (1979).

[CrossRef]

N. Wolfson, Y. Mekler, J. H. Joseph, “Comparative study of inversion techniques. Part II: Resolving power, conservation of normalization and superposition principles,” J. Appl. Meteorol. 18, 556–561 (1979).

[CrossRef]

R. L. Zollars, “Turbidimetric method for online determination of latex particle number and particle-size distribution,” J. Colloid Interface Sci. 74, 163–172 (1980).

[CrossRef]

J. G. Crump, J. H. Seinfeld, “A new algorithm for inversion of aerosol size distribution data,” Aerosol Sci. Technol. 1, 15–34 (1982).

E. Trakhovsky, S. G. Lipson, A. D. Devir, “Atmospheric aerosols investigated by inversion of experimental transmittance data,” Appl. Opt. 21, 3005–3010 (1982).

[CrossRef]
[PubMed]

H. Grassl, “Determination of aerosol size distributions from spectral attenuation measurements,” Appl. Opt. 10, 2534–2538 (1971).

[CrossRef]
[PubMed]

R. Santer, M. Herman, “Particle size distribution from forward scattered light using the Chahine inversion scheme,” Appl. Opt. 22, 2294–2301 (1983).

[CrossRef]
[PubMed]

F. Ferri, M. Giglio, U. Perini, “Inversion of light scattered data from fractals by means of the Chahine iterative algorithm,” Appl. Opt. 28, 3074–3082 (1989).

[CrossRef]
[PubMed]

G. Yamamoto, M. Tanaka, “Determination of aerosol size distribution by spectral attenuation measurements,” Appl. Opt. 8, 447–453 (1969).

[CrossRef]
[PubMed]

P. T. Walters, “Practical applications of inverting spectral turbidity data to provide aerosol size distributions,” Appl. Opt. 19, 2353–2365 (1980).

[CrossRef]
[PubMed]

G. Viera, M. A. Box, “Information content analysis of aerosol remote-sensing experiments using an analytic eigenfunction theory: anomalous diffraction approximation,” Appl. Opt. 24, 4525–4533 (1985).

[CrossRef]
[PubMed]

S. Twomey, H. B. Howell, “Some aspects of the optical estimation of microstructure in fog and cloud,” Appl. Opt. 6, 2125–2131 (1967).

[CrossRef]
[PubMed]

E. E. Uthe, “Particle-size evaluations using multiwavelength extinction measurements,” Appl. Opt. 21, 454–459 (1982).

[CrossRef]
[PubMed]

L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745–754 (1974).

[CrossRef]

G. E. Shaw, “Intercomparison of equatorial and polar multiwavelength atmospheric optical depths and sky radiance,” Bull. Am. Meteorol. Soc. 54, 1073–1080 (1973).

A. Ångström, “On the atmospheric transmission of sun radiation and on dust in the air,” Geogr. Ann. 11, 156–166 (1929).

[CrossRef]

G. E. Backus, J. F. Gilbert, “Numerical applications of a formalism for geophysical inverse problems,” Geophys. J. R. Astron. Soc. 13, 247–276 (1967).

[CrossRef]

M. Bertero, C. De Mol, E. R. Pike, “Particle size distributions from spectral turbidity: a singular-system analysis,” Inverse Problems 2, 247–258 (1986).

[CrossRef]

N. Wolfson, J. H. Joseph, Y. Mekler, “Comparative study of inversion techniques. Part I: Accuracy and stability,” J. Appl. Meteorol. 18, 543–555 (1979).

[CrossRef]

N. Wolfson, Y. Mekler, J. H. Joseph, “Comparative study of inversion techniques. Part II: Resolving power, conservation of normalization and superposition principles,” J. Appl. Meteorol. 18, 556–561 (1979).

[CrossRef]

D. L. Phillips, “A technique for the numerical solution of certain integral equations of the first kind,” J. Assoc. Comput. Mach. 9, 84–97 (1962).

[CrossRef]

S. Twomey, “On the numerical solution of Fredholm integral equations of the first kind by the inversion of the linear system produced by quadrature,” J. Assoc. Comput. Mach. 10, 97–101 (1963).

[CrossRef]

G. P. Box, K. M. Sealey, M. A. Box, “Inversion of Mie extinction measurements using analytic eigenfunction theory,” J. Atmos. Sci. 49, 2074–2081 (1992).

[CrossRef]

M. D. King, D. M. Byrne, B. M. Herman, J. A. Reagan, “Aerosol size distributions obtained by inversion of spectral optical depth measurements,” J. Atmos. Sci. 35, 2153–2167 (1978).

[CrossRef]

M. T. Chahine, “Inverse problems in radiative transfer: determination of atmospheric parameters,” J. Atmos. Sci. 27, 960–967 (1970).

[CrossRef]

R. L. Zollars, “Turbidimetric method for online determination of latex particle number and particle-size distribution,” J. Colloid Interface Sci. 74, 163–172 (1980).

[CrossRef]

S. Twomey, “Comparison of constrained linear inversion and an iterative nonlinear algorithm applied to the indirect estimation of particle size distributions,” J. Comput. Phys. 18, 188–200 (1975).

[CrossRef]

S. Twomey, “The application of numerical filtering to the solution of integral equations encountered in indirect sensing measurements,” J. Franklin Inst. 279, No. 2, 95–109 (1965).

[CrossRef]

H. Quenzel, “Determination of size distribution of atmospheric aerosol particles from spectral solar radiation measurements,” J. Geophys. Res. 75, 2915–2921 (1970).

[CrossRef]

J. G. McWhirter, E. R. Pike, “On the numerical inversion of the Laplace transform and similar Fredholm integral equations of the first kind,” J. Phys. A 11, 1729–1745 (1978).

[CrossRef]

A. Bassini, S. Musazzi, E. Paganini, U. Perini, F. Ferri, M. Giglio, “Optical particle sizer based on the Chahine inversion scheme,” Opt. Eng. 31, 1112–1117 (1992).

[CrossRef]

C. F. Bohren, D. R. Hufman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), p. 77.

H. C. Van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981), Chap. 9, p. 127.

M. Bertero, C. De Mol, E. R. Pike, “Particle sizing by inversion of extinction data,” in Ref. 2, pp. 55–61.

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969), Chap. 7.

G. Gouesbet, G. Gréhan, eds., Proceedings of an International Symposium on Optical Particle Sizing: Theory and Practice (Plenum, New York, 1988).

E. D. Hirleman, ed., Proceedings of the Second International Congress on Optical Particle Sizing (Arizona State University Printing Services, Tempe, Ariz., 1990), pp. 169–435.

M. Maeda, S. Nakae, M. Ikegami, eds., Proceedings of the Third International Congress on Optical Particle Sizing (n.p., 1993).

S. Twomey, Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements (Elsevier, Amsterdam, 1977), Chap. 7, p. 179.