Abstract

A kinoform-based Nipkow-disk system, as applied to a real-time confocal microscope, is presented. The major advantage of this technique must be its high light efficiency (e.g., >80%), which significantly improves the performance of a confocal microscope. Our preliminary experiment indicates that there are potential applications to three-dimensional microscopic imaging as well as to object surface detection.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1980), p. 419.
  2. T. Wilson, C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, New York, 1984), p. 2.
  3. M. Petran, M. Hadravsky, “Tandem-scanning reflection-light microscope,” J. Opt. Soc. Am. 58, 661–664 (1968).
    [CrossRef]
  4. G. S. Kino, “Intermediate optics in Nipkow disk microscopes,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, New York, 1990), Chap. 10, pp. 105–111.
    [CrossRef]
  5. L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The kinoform, a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).
    [CrossRef]
  6. G. Lu, Z. Zhang, F. T. S. Yu, A. Tanone, “Pendulum iterative algorithm for phase retrieval from modulus data,” Opt. Eng. 33, 548–555 (1994).
    [CrossRef]

1994 (1)

G. Lu, Z. Zhang, F. T. S. Yu, A. Tanone, “Pendulum iterative algorithm for phase retrieval from modulus data,” Opt. Eng. 33, 548–555 (1994).
[CrossRef]

1969 (1)

L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The kinoform, a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).
[CrossRef]

1968 (1)

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1980), p. 419.

Hadravsky, M.

Hirsch, P. M.

L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The kinoform, a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).
[CrossRef]

Jordan, J. A.

L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The kinoform, a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).
[CrossRef]

Kino, G. S.

G. S. Kino, “Intermediate optics in Nipkow disk microscopes,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, New York, 1990), Chap. 10, pp. 105–111.
[CrossRef]

Lesem, L. B.

L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The kinoform, a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).
[CrossRef]

Lu, G.

G. Lu, Z. Zhang, F. T. S. Yu, A. Tanone, “Pendulum iterative algorithm for phase retrieval from modulus data,” Opt. Eng. 33, 548–555 (1994).
[CrossRef]

Petran, M.

Sheppard, C.

T. Wilson, C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, New York, 1984), p. 2.

Tanone, A.

G. Lu, Z. Zhang, F. T. S. Yu, A. Tanone, “Pendulum iterative algorithm for phase retrieval from modulus data,” Opt. Eng. 33, 548–555 (1994).
[CrossRef]

Wilson, T.

T. Wilson, C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, New York, 1984), p. 2.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1980), p. 419.

Yu, F. T. S.

G. Lu, Z. Zhang, F. T. S. Yu, A. Tanone, “Pendulum iterative algorithm for phase retrieval from modulus data,” Opt. Eng. 33, 548–555 (1994).
[CrossRef]

Zhang, Z.

G. Lu, Z. Zhang, F. T. S. Yu, A. Tanone, “Pendulum iterative algorithm for phase retrieval from modulus data,” Opt. Eng. 33, 548–555 (1994).
[CrossRef]

IBM J. Res. Dev. (1)

L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The kinoform, a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Eng. (1)

G. Lu, Z. Zhang, F. T. S. Yu, A. Tanone, “Pendulum iterative algorithm for phase retrieval from modulus data,” Opt. Eng. 33, 548–555 (1994).
[CrossRef]

Other (3)

G. S. Kino, “Intermediate optics in Nipkow disk microscopes,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, New York, 1990), Chap. 10, pp. 105–111.
[CrossRef]

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1980), p. 419.

T. Wilson, C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, New York, 1984), p. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Depth discrimination in a confocal microscope.

Fig. 2
Fig. 2

Confocal spot size as a function of a pinhole diameter: α, half-field angle; Δz, axial dimension; Δr, lateral dimension; L, objective distance; F, focal length.

Fig. 3
Fig. 3

Perforated Nipkow disk.

Fig. 4
Fig. 4

Composite Nipkow disk with multiple spiral pinholes.

Fig. 5
Fig. 5

Scanning Nipkow-disk microscope.

Fig. 6
Fig. 6

Application of a kinoform phase mask to a Nipkow-disk confocal microscope: FL., Fourier lens.

Fig. 7
Fig. 7

Generation of a Nipkow-disk-based kinoform with a PIA algorithm: FFT, fast Fourier transform; IFFT, inverse fast Fourier transform.

Fig. 8
Fig. 8

A 16-level Nipkow-disk-based kinoform phase mask.

Fig. 9
Fig. 9

Diffraction pattern from the designed kinoform.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δ r = 0.61 λ n sin α 1.2 d 0 n M ,
Δ z = 2 λ n sin 2 α 8 d 0 2 n λ M 2 ,
B = 1 N 2 u N - 1 [ G ( u ) - F ( u ) ] 2 .
B B k + k N - 1 B k ( x ) g [ g ( x ) - g k ( x ) ] + k N - 1 B k ( x ) θ [ θ ( x ) - θ k ( x ) ] ,
B ( x ) g = 2 g ( x ) - 2 g ( x ) cos [ θ ( x ) - θ ( x ) ] ,
B ( x ) θ = 2 g ( x ) g ( x ) sin [ θ ( x ) - θ ( x ) ] ,
θ k + 1 ( x ) = 2 θ k ( x ) - θ k ( x ) , g k + 1 ( x ) = { f ( x ) - p σ g k ( x ) - f ( x ) p σ f ( x ) - [ g k ( x ) - f ( x ) ] [ g k ( x ) - f ( x ) ] p σ f ( x ) + p σ [ g k ( x ) - f ( x ) ] - p σ ,
σ 2 = 1 N 2 k N - 1 [ g k ( x ) - f ( x ) ] 2 .

Metrics