Abstract

The successful fabrication of metal/dielectric multilayer filters requires not only accurate control of the individual layer thicknesses, but also a good knowledge of the optical constants of the materials used in the filters. In the case of metal films, it is also essential to know whether any transition layers are formed at the interfaces and, if so, how their thicknesses and optical constants depend on the deposition conditions. An automatic, real-time process control, magnetron sputtering deposition system was modified to permit the manufacture of metal/dielectric filters using optical monitoring techniques. To illustrate the performance of this system, two bandpass filters, a short-wavelength pass filter, and a neutral density filter were produced, all having a low reflectance for light incident on one side. The metal layers used in these filters consisted of either Ni or Ag. The Ag films could be protected from the O2 plasma using thin Ni or Si films. Good agreement was obtained between the calculated and measured spectral transmittance and reflectance curves.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. A. Koss, A. Belkind, D. E. Aspnes, L. Nazar, J. A. Dobrowolski, F. C. Ho, K. Memarzadeh, J. A. Woollam, F. Bernoux, J. P. Piel, J.-L. Stehle, “Uncertainty of multiple determination of optical constants and layer thicknesses of thin films. Case of TiO2/Ag/TiO2 coating on glass,” in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion VII, C. Granqvist, C. M. Lampert, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1016, 199–206 (1988).
  2. K. Memarzadeh, J. A. Woollam, A. Belkind, “Ellipsometric study of ZnO/Ag/ZnO optical coatings. Determination of layer thicknesses and optical constants,” in Optical Materials Technology for Energy, Efficiency and Solar Energy, C. M. Lampert, ed., Proc. Soc. Photo-Opt. Instrum. Eng.823, 54–61 (1987).
  3. V. T. Bly, J. T. Cox, “Infrared absorber for ferroelectric detectors,” Appl. Opt. 33, 26–30 (1994).
    [Crossref] [PubMed]
  4. J. A. Dobrowolski, L. Li, R. Kemp, “Metal/dielectric transmission interference filters with low reflectance. 1. Design,” Appl. Opt. 34, 5673–5683 (1995).
    [Crossref] [PubMed]
  5. J. A. Dobrowolski, J. R. Pekelsky, R. Pelletier, M. Ranger, B. T. Sullivan, A. J. Waldorf, “A practical magnetron sputtering system for the deposition of optical multilayer coatings,” Appl. Opt. 31, 3784–3789 (1992).
    [Crossref] [PubMed]
  6. B. T. Sullivan, J. A. Dobrowolski, “Deposition error compensation for optical multilayer coatings. I. Theoretical description,” Appl. Opt. 31, 3821–3835 (1992).
    [Crossref] [PubMed]
  7. B. T. Sullivan, J. A. Dobrowolski, “Deposition error compensation for optical multilayer coatings. II. Experimental results—sputtering system,” Appl. Opt. 32, 2351–2360 (1993).
    [Crossref] [PubMed]
  8. TFDesign is a NRCC developed, noncommercial program.
  9. J. H. Underwood, E. M. Gullikson, K. Nguyen, “Tarnishing of Mo/Si multilayer x-ray mirrors,” Appl. Opt. 32, 6985–6990 (1993).
    [Crossref] [PubMed]
  10. B. T. Sullivan, “Automated process control of optical coatings,” in Annual Meeting Technical Digest, Vol. 16 of OSA 1993 Technical Digest Series (Optical Society of America, Washington, D.C., 1993), p. 139.
  11. L. Li, J. A. Dobrowolski, B. T. Sullivan, “Low reflectance interference coatings with arbitrary transmittance,” in Annual Meeting Technical Digest, Vol. 16 of OSA 1993 Technical Digest Series (Optical Society of America, Washington, D.C., 1993), p. 114.
  12. J. A. Dobrowolski, “Black bandpass interference filters,” in Annual Meeting Technical Digest, Vol. 16 of OSA 1993 Technical Digest Series (Optical Society of America, Washington, D.C., 1993), p. 115.

1995 (1)

1994 (1)

1993 (2)

1992 (2)

Aspnes, D. E.

V. A. Koss, A. Belkind, D. E. Aspnes, L. Nazar, J. A. Dobrowolski, F. C. Ho, K. Memarzadeh, J. A. Woollam, F. Bernoux, J. P. Piel, J.-L. Stehle, “Uncertainty of multiple determination of optical constants and layer thicknesses of thin films. Case of TiO2/Ag/TiO2 coating on glass,” in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion VII, C. Granqvist, C. M. Lampert, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1016, 199–206 (1988).

Belkind, A.

V. A. Koss, A. Belkind, D. E. Aspnes, L. Nazar, J. A. Dobrowolski, F. C. Ho, K. Memarzadeh, J. A. Woollam, F. Bernoux, J. P. Piel, J.-L. Stehle, “Uncertainty of multiple determination of optical constants and layer thicknesses of thin films. Case of TiO2/Ag/TiO2 coating on glass,” in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion VII, C. Granqvist, C. M. Lampert, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1016, 199–206 (1988).

K. Memarzadeh, J. A. Woollam, A. Belkind, “Ellipsometric study of ZnO/Ag/ZnO optical coatings. Determination of layer thicknesses and optical constants,” in Optical Materials Technology for Energy, Efficiency and Solar Energy, C. M. Lampert, ed., Proc. Soc. Photo-Opt. Instrum. Eng.823, 54–61 (1987).

Bernoux, F.

V. A. Koss, A. Belkind, D. E. Aspnes, L. Nazar, J. A. Dobrowolski, F. C. Ho, K. Memarzadeh, J. A. Woollam, F. Bernoux, J. P. Piel, J.-L. Stehle, “Uncertainty of multiple determination of optical constants and layer thicknesses of thin films. Case of TiO2/Ag/TiO2 coating on glass,” in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion VII, C. Granqvist, C. M. Lampert, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1016, 199–206 (1988).

Bly, V. T.

Cox, J. T.

Dobrowolski, J. A.

J. A. Dobrowolski, L. Li, R. Kemp, “Metal/dielectric transmission interference filters with low reflectance. 1. Design,” Appl. Opt. 34, 5673–5683 (1995).
[Crossref] [PubMed]

B. T. Sullivan, J. A. Dobrowolski, “Deposition error compensation for optical multilayer coatings. II. Experimental results—sputtering system,” Appl. Opt. 32, 2351–2360 (1993).
[Crossref] [PubMed]

J. A. Dobrowolski, J. R. Pekelsky, R. Pelletier, M. Ranger, B. T. Sullivan, A. J. Waldorf, “A practical magnetron sputtering system for the deposition of optical multilayer coatings,” Appl. Opt. 31, 3784–3789 (1992).
[Crossref] [PubMed]

B. T. Sullivan, J. A. Dobrowolski, “Deposition error compensation for optical multilayer coatings. I. Theoretical description,” Appl. Opt. 31, 3821–3835 (1992).
[Crossref] [PubMed]

L. Li, J. A. Dobrowolski, B. T. Sullivan, “Low reflectance interference coatings with arbitrary transmittance,” in Annual Meeting Technical Digest, Vol. 16 of OSA 1993 Technical Digest Series (Optical Society of America, Washington, D.C., 1993), p. 114.

J. A. Dobrowolski, “Black bandpass interference filters,” in Annual Meeting Technical Digest, Vol. 16 of OSA 1993 Technical Digest Series (Optical Society of America, Washington, D.C., 1993), p. 115.

V. A. Koss, A. Belkind, D. E. Aspnes, L. Nazar, J. A. Dobrowolski, F. C. Ho, K. Memarzadeh, J. A. Woollam, F. Bernoux, J. P. Piel, J.-L. Stehle, “Uncertainty of multiple determination of optical constants and layer thicknesses of thin films. Case of TiO2/Ag/TiO2 coating on glass,” in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion VII, C. Granqvist, C. M. Lampert, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1016, 199–206 (1988).

Gullikson, E. M.

Ho, F. C.

V. A. Koss, A. Belkind, D. E. Aspnes, L. Nazar, J. A. Dobrowolski, F. C. Ho, K. Memarzadeh, J. A. Woollam, F. Bernoux, J. P. Piel, J.-L. Stehle, “Uncertainty of multiple determination of optical constants and layer thicknesses of thin films. Case of TiO2/Ag/TiO2 coating on glass,” in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion VII, C. Granqvist, C. M. Lampert, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1016, 199–206 (1988).

Kemp, R.

Koss, V. A.

V. A. Koss, A. Belkind, D. E. Aspnes, L. Nazar, J. A. Dobrowolski, F. C. Ho, K. Memarzadeh, J. A. Woollam, F. Bernoux, J. P. Piel, J.-L. Stehle, “Uncertainty of multiple determination of optical constants and layer thicknesses of thin films. Case of TiO2/Ag/TiO2 coating on glass,” in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion VII, C. Granqvist, C. M. Lampert, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1016, 199–206 (1988).

Li, L.

J. A. Dobrowolski, L. Li, R. Kemp, “Metal/dielectric transmission interference filters with low reflectance. 1. Design,” Appl. Opt. 34, 5673–5683 (1995).
[Crossref] [PubMed]

L. Li, J. A. Dobrowolski, B. T. Sullivan, “Low reflectance interference coatings with arbitrary transmittance,” in Annual Meeting Technical Digest, Vol. 16 of OSA 1993 Technical Digest Series (Optical Society of America, Washington, D.C., 1993), p. 114.

Memarzadeh, K.

K. Memarzadeh, J. A. Woollam, A. Belkind, “Ellipsometric study of ZnO/Ag/ZnO optical coatings. Determination of layer thicknesses and optical constants,” in Optical Materials Technology for Energy, Efficiency and Solar Energy, C. M. Lampert, ed., Proc. Soc. Photo-Opt. Instrum. Eng.823, 54–61 (1987).

V. A. Koss, A. Belkind, D. E. Aspnes, L. Nazar, J. A. Dobrowolski, F. C. Ho, K. Memarzadeh, J. A. Woollam, F. Bernoux, J. P. Piel, J.-L. Stehle, “Uncertainty of multiple determination of optical constants and layer thicknesses of thin films. Case of TiO2/Ag/TiO2 coating on glass,” in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion VII, C. Granqvist, C. M. Lampert, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1016, 199–206 (1988).

Nazar, L.

V. A. Koss, A. Belkind, D. E. Aspnes, L. Nazar, J. A. Dobrowolski, F. C. Ho, K. Memarzadeh, J. A. Woollam, F. Bernoux, J. P. Piel, J.-L. Stehle, “Uncertainty of multiple determination of optical constants and layer thicknesses of thin films. Case of TiO2/Ag/TiO2 coating on glass,” in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion VII, C. Granqvist, C. M. Lampert, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1016, 199–206 (1988).

Nguyen, K.

Pekelsky, J. R.

Pelletier, R.

Piel, J. P.

V. A. Koss, A. Belkind, D. E. Aspnes, L. Nazar, J. A. Dobrowolski, F. C. Ho, K. Memarzadeh, J. A. Woollam, F. Bernoux, J. P. Piel, J.-L. Stehle, “Uncertainty of multiple determination of optical constants and layer thicknesses of thin films. Case of TiO2/Ag/TiO2 coating on glass,” in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion VII, C. Granqvist, C. M. Lampert, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1016, 199–206 (1988).

Ranger, M.

Stehle, J.-L.

V. A. Koss, A. Belkind, D. E. Aspnes, L. Nazar, J. A. Dobrowolski, F. C. Ho, K. Memarzadeh, J. A. Woollam, F. Bernoux, J. P. Piel, J.-L. Stehle, “Uncertainty of multiple determination of optical constants and layer thicknesses of thin films. Case of TiO2/Ag/TiO2 coating on glass,” in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion VII, C. Granqvist, C. M. Lampert, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1016, 199–206 (1988).

Sullivan, B. T.

B. T. Sullivan, J. A. Dobrowolski, “Deposition error compensation for optical multilayer coatings. II. Experimental results—sputtering system,” Appl. Opt. 32, 2351–2360 (1993).
[Crossref] [PubMed]

B. T. Sullivan, J. A. Dobrowolski, “Deposition error compensation for optical multilayer coatings. I. Theoretical description,” Appl. Opt. 31, 3821–3835 (1992).
[Crossref] [PubMed]

J. A. Dobrowolski, J. R. Pekelsky, R. Pelletier, M. Ranger, B. T. Sullivan, A. J. Waldorf, “A practical magnetron sputtering system for the deposition of optical multilayer coatings,” Appl. Opt. 31, 3784–3789 (1992).
[Crossref] [PubMed]

B. T. Sullivan, “Automated process control of optical coatings,” in Annual Meeting Technical Digest, Vol. 16 of OSA 1993 Technical Digest Series (Optical Society of America, Washington, D.C., 1993), p. 139.

L. Li, J. A. Dobrowolski, B. T. Sullivan, “Low reflectance interference coatings with arbitrary transmittance,” in Annual Meeting Technical Digest, Vol. 16 of OSA 1993 Technical Digest Series (Optical Society of America, Washington, D.C., 1993), p. 114.

Underwood, J. H.

Waldorf, A. J.

Woollam, J. A.

K. Memarzadeh, J. A. Woollam, A. Belkind, “Ellipsometric study of ZnO/Ag/ZnO optical coatings. Determination of layer thicknesses and optical constants,” in Optical Materials Technology for Energy, Efficiency and Solar Energy, C. M. Lampert, ed., Proc. Soc. Photo-Opt. Instrum. Eng.823, 54–61 (1987).

V. A. Koss, A. Belkind, D. E. Aspnes, L. Nazar, J. A. Dobrowolski, F. C. Ho, K. Memarzadeh, J. A. Woollam, F. Bernoux, J. P. Piel, J.-L. Stehle, “Uncertainty of multiple determination of optical constants and layer thicknesses of thin films. Case of TiO2/Ag/TiO2 coating on glass,” in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion VII, C. Granqvist, C. M. Lampert, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1016, 199–206 (1988).

Appl. Opt. (6)

Other (6)

B. T. Sullivan, “Automated process control of optical coatings,” in Annual Meeting Technical Digest, Vol. 16 of OSA 1993 Technical Digest Series (Optical Society of America, Washington, D.C., 1993), p. 139.

L. Li, J. A. Dobrowolski, B. T. Sullivan, “Low reflectance interference coatings with arbitrary transmittance,” in Annual Meeting Technical Digest, Vol. 16 of OSA 1993 Technical Digest Series (Optical Society of America, Washington, D.C., 1993), p. 114.

J. A. Dobrowolski, “Black bandpass interference filters,” in Annual Meeting Technical Digest, Vol. 16 of OSA 1993 Technical Digest Series (Optical Society of America, Washington, D.C., 1993), p. 115.

TFDesign is a NRCC developed, noncommercial program.

V. A. Koss, A. Belkind, D. E. Aspnes, L. Nazar, J. A. Dobrowolski, F. C. Ho, K. Memarzadeh, J. A. Woollam, F. Bernoux, J. P. Piel, J.-L. Stehle, “Uncertainty of multiple determination of optical constants and layer thicknesses of thin films. Case of TiO2/Ag/TiO2 coating on glass,” in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion VII, C. Granqvist, C. M. Lampert, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1016, 199–206 (1988).

K. Memarzadeh, J. A. Woollam, A. Belkind, “Ellipsometric study of ZnO/Ag/ZnO optical coatings. Determination of layer thicknesses and optical constants,” in Optical Materials Technology for Energy, Efficiency and Solar Energy, C. M. Lampert, ed., Proc. Soc. Photo-Opt. Instrum. Eng.823, 54–61 (1987).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Reproducibility and (b) accuracy of the automated deposition control system for an 18-layer all-dielectric multilayer coating. In this and in similiar figures, the term desired refers to the theoretical curve calculated based on the desired layer thicknesses, the term measured refers to the experimentally measured curve, and the term determined refers to the theoretical curve calculated based on the layer thicknesses determined during the deposition run.

Fig. 2
Fig. 2

Theoretical fits to in situ transmittance measurements of equally spaced thicknesses of (a) nickel and (b) silver thin films. The thicknesses vary (a) from 2 to 20 nm for the Ni films and (b) from 10 to 60 nm for the Ag films. The theoretical fits were based on the optical constants of these metals determined from ellipsometric measurements of an opaque layer.

Fig. 3
Fig. 3

(a) The in situ transmittance of a Ni thin film is shown in curves (1) to (4) for elapsed O2 plasma exposure times of 0, 5, 10, and 15 min, respectively. Two theoretical fits for the as-deposited Ni film are based on (i) an 8.5-nm Ni film only and (ii) a 7.8-nm Ni and a 4.1-nm NiO. The theoretical fit for the O2 plasma-exposed Ni film gave thicknesses of 6.6 nm for the Ni and 6.0 nm for the NiO layers. (b) The in situ transmittance of an ~25-nm-thick Ag thin film is shown in curves (1) to (5) for elapsed O2 plasma exposure times of 0, 5, 10, 15, and 20 min, respectively.

Fig. 4
Fig. 4

Protected Ag layers. (a) and (b) Performance of Ag layers protected with ~2-nm-thick Ni and ~3-nm-thick Si layers, respectively. The dashed, thick, and solid curves correspond to the in situ transmittances of the as-deposited layers, after the deposition of the protective layer and after a 20-min exposure to the O2 plasma, respectively. (c) Fabry–Perot filter of the Ag/SiO2/Ag/SiO2 type: theoretical transmittance (solid curve) and measured transmittances of filters with protective layers based on Ni and Si.

Fig. 5
Fig. 5

Double-cavity Fabry–Perot filter (see Table 1). Desired, measured, and determined (a) transmittance and (b) reflectance curves.

Fig. 6
Fig. 6

Short-wavelength pass filter (see Table 2). Desired, measured, and determined (a) transmittance and (b) reflectance curves.

Fig. 7
Fig. 7

Neutral density filter (see Table 3). Desired, measured, and determined (a) transmittance and (b) reflectance curves.

Fig. 8
Fig. 8

(a) and (b) Conventional single-cavity Fabry–Perot filter. Desired, measured, and determined transmittance and reflectance curves. The construction parameters of this filter are the same as those listed in Table 4 except that the last Ni layer is omitted. (c) and (d) Low-reflectance single-cavity Fabry–Perot filter (see Table 4). Desired, measured, and determined transmittance and reflectance curves.

Fig. 9
Fig. 9

Aging of metal/dielectric interference filters. Transmittance and reflectance curves of (a) a double-cavity Fabry–Perot filter, (b) a short-wavelength pass filter, (c) a neutral density filter, immediately after deposition and after 12 months.

Fig. 10
Fig. 10

Transmittance of a Ag layer protected with a NiO layer just after deposition and after 12 months.

Tables (4)

Tables Icon

Table 1 Construction Parameters of the Double-Cavity Fabry-Perot Filter

Tables Icon

Table 2 Construction Parameters of the Short-Wavelength Pass Filter

Tables Icon

Table 3 Construction Parameters of the Neutral Density Filter

Tables Icon

Table 4 Construction Parameters of the Single-Cavity Fabry-Perot Filter

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

t oxide t metal = M oxide ρ oxide ρ metal M metal ,

Metrics