Abstract

We propose an interferometric method for measuring absolute distances larger than the wavelength. A laser diode is used as a light source. The principle of operation is based on multiple-wavelength interferometry that uses a modulated light source. This method uses the fact that the wavelength of light emitted by the laser diode can be varied by means of the injection current. The modulation of the injection current in combination with the optical heterodyne technique causes a high-frequency phase-modulated detector signal. The phase deviation of the signal is a measure of the optical path difference in the interferometer. By FM demodulation of the detector output with a phase-locked loop demodulator, the optical path difference can be determined directly without the classical ambiguity problem of interferometry. The measuring range in the experiments was limited to 50 mm by the maximum travel range of the used specimen translation stage. Because of the inherent light sensitivity of the method described, the rangefinder can be used for three-dimensional profile measurements on a wide variety of objects, even on diffuse scattering surfaces.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. C. Williams, H. K. Wickramasinghe, “Optical ranging by wavelength multiplexed interferometry,” J. Appl. Phys. 60, 1900–1903 (1986).
    [CrossRef]
  2. R. Dändliker, R. Thalmann, D. Prongué, “Two-wavelength laser interferometry using superheterodyne detection,” Opt. Lett. 13, 339–341 (1988).
    [CrossRef] [PubMed]
  3. Z. Sodnik, E. Fischer, T. Ittner, H. J. Tiziani, “Two-wavelength double heterodyne interferometry using a matched grating technique,” Appl. Opt. 30, 3139–3144 (1991).
    [CrossRef] [PubMed]
  4. E. Fischer, T. Ittner, Z. Sodnik, H. J. Tiziani, “Heterodynverfahren für hochgenaue Vermessung im Nahbereich,” Z. Vermessungs. 117, 46–54 (1992).
  5. W. M. Wang, K. T. V. Grattan, W. J. O. Boyle, A. W. Palmer, “Active optical feedback in a dual-diode laser configuration applied to displacement measurements with a wide dynamic range,” Appl. Opt. 33, 1795–1801 (1994).
    [CrossRef] [PubMed]
  6. H. Kikuta, K. Iwata, R. Nagata, “Distance measurement by the wavelength shift of laser diode light,” Appl. Opt. 25, 2976–2980 (1986).
    [CrossRef] [PubMed]
  7. A. J. den Boef, “Interferometric laser rangefinder using a frequency modulated diode laser,” Appl. Opt. 26, 4545–4550 (1987).
    [CrossRef]
  8. M. Suematsu, M. Takeda, “Wavelength-shift interferometry for distance measurements using the Fourier transform technique for fringe analysis,” Appl. Opt. 30, 4046–4055 (1991).
    [CrossRef] [PubMed]
  9. P. de Groot, J. McGarvey, “Chirp synthetic wavelength interferometry,” Opt. Lett. 17, 1626–1628 (1992).
    [CrossRef] [PubMed]
  10. R. Mäusl, Analoge Modulationsverfahren, 2nd ed. (Hüthig-Verlag, Heidelberg, 1992).
  11. A. L. Migdall, B. Roop, Y. C. Zheng, J. E. Hardis, G. J. Xia, “Use of heterodyne detection to measure optical transmittance over a wide range,” Appl. Opt. 29, 5136–5144 (1990).
    [CrossRef] [PubMed]

1994 (1)

1992 (2)

E. Fischer, T. Ittner, Z. Sodnik, H. J. Tiziani, “Heterodynverfahren für hochgenaue Vermessung im Nahbereich,” Z. Vermessungs. 117, 46–54 (1992).

P. de Groot, J. McGarvey, “Chirp synthetic wavelength interferometry,” Opt. Lett. 17, 1626–1628 (1992).
[CrossRef] [PubMed]

1991 (2)

1990 (1)

1988 (1)

1987 (1)

1986 (2)

C. C. Williams, H. K. Wickramasinghe, “Optical ranging by wavelength multiplexed interferometry,” J. Appl. Phys. 60, 1900–1903 (1986).
[CrossRef]

H. Kikuta, K. Iwata, R. Nagata, “Distance measurement by the wavelength shift of laser diode light,” Appl. Opt. 25, 2976–2980 (1986).
[CrossRef] [PubMed]

Boyle, W. J. O.

Dändliker, R.

de Groot, P.

den Boef, A. J.

Fischer, E.

E. Fischer, T. Ittner, Z. Sodnik, H. J. Tiziani, “Heterodynverfahren für hochgenaue Vermessung im Nahbereich,” Z. Vermessungs. 117, 46–54 (1992).

Z. Sodnik, E. Fischer, T. Ittner, H. J. Tiziani, “Two-wavelength double heterodyne interferometry using a matched grating technique,” Appl. Opt. 30, 3139–3144 (1991).
[CrossRef] [PubMed]

Grattan, K. T. V.

Hardis, J. E.

Ittner, T.

E. Fischer, T. Ittner, Z. Sodnik, H. J. Tiziani, “Heterodynverfahren für hochgenaue Vermessung im Nahbereich,” Z. Vermessungs. 117, 46–54 (1992).

Z. Sodnik, E. Fischer, T. Ittner, H. J. Tiziani, “Two-wavelength double heterodyne interferometry using a matched grating technique,” Appl. Opt. 30, 3139–3144 (1991).
[CrossRef] [PubMed]

Iwata, K.

Kikuta, H.

Mäusl, R.

R. Mäusl, Analoge Modulationsverfahren, 2nd ed. (Hüthig-Verlag, Heidelberg, 1992).

McGarvey, J.

Migdall, A. L.

Nagata, R.

Palmer, A. W.

Prongué, D.

Roop, B.

Sodnik, Z.

E. Fischer, T. Ittner, Z. Sodnik, H. J. Tiziani, “Heterodynverfahren für hochgenaue Vermessung im Nahbereich,” Z. Vermessungs. 117, 46–54 (1992).

Z. Sodnik, E. Fischer, T. Ittner, H. J. Tiziani, “Two-wavelength double heterodyne interferometry using a matched grating technique,” Appl. Opt. 30, 3139–3144 (1991).
[CrossRef] [PubMed]

Suematsu, M.

Takeda, M.

Thalmann, R.

Tiziani, H. J.

E. Fischer, T. Ittner, Z. Sodnik, H. J. Tiziani, “Heterodynverfahren für hochgenaue Vermessung im Nahbereich,” Z. Vermessungs. 117, 46–54 (1992).

Z. Sodnik, E. Fischer, T. Ittner, H. J. Tiziani, “Two-wavelength double heterodyne interferometry using a matched grating technique,” Appl. Opt. 30, 3139–3144 (1991).
[CrossRef] [PubMed]

Wang, W. M.

Wickramasinghe, H. K.

C. C. Williams, H. K. Wickramasinghe, “Optical ranging by wavelength multiplexed interferometry,” J. Appl. Phys. 60, 1900–1903 (1986).
[CrossRef]

Williams, C. C.

C. C. Williams, H. K. Wickramasinghe, “Optical ranging by wavelength multiplexed interferometry,” J. Appl. Phys. 60, 1900–1903 (1986).
[CrossRef]

Xia, G. J.

Zheng, Y. C.

Appl. Opt. (6)

J. Appl. Phys. (1)

C. C. Williams, H. K. Wickramasinghe, “Optical ranging by wavelength multiplexed interferometry,” J. Appl. Phys. 60, 1900–1903 (1986).
[CrossRef]

Opt. Lett. (2)

Z. Vermessungs. (1)

E. Fischer, T. Ittner, Z. Sodnik, H. J. Tiziani, “Heterodynverfahren für hochgenaue Vermessung im Nahbereich,” Z. Vermessungs. 117, 46–54 (1992).

Other (1)

R. Mäusl, Analoge Modulationsverfahren, 2nd ed. (Hüthig-Verlag, Heidelberg, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Basic setup for FM-demodulation interferometry. The PM detector signal, which has a high-frequency carrier, is demodulated with a PLL FM demodulator. The amplitude of the demodulated signal is proportional to the OPD in the interferometer. Mod., modulator; DC, direct current; PIN, positive-intrinsic-negative.

Fig. 2
Fig. 2

Basic sketch of a PLL demodulator.

Fig. 3
Fig. 3

Experimental setup for measurements onto diffuse scattering objects. Det., detector; Meas., measuring input; Ref., reference.

Fig. 4
Fig. 4

Long-term stability of the phase-deviation interferometer (0.4 mV ≜ 20 μm).

Fig. 5
Fig. 5

Displacement measurement.

Fig. 6
Fig. 6

Displacement measurements for different target reflectivities (object: mirror) with variable reflectivity. For more details see Fig. 7 and text.

Fig. 7
Fig. 7

Deviation from the expected linear relation in Fig. 6.

Fig. 8
Fig. 8

Displacement measurement with roughness standard R z = 1.6 μm.

Fig. 9
Fig. 9

Displacement measurement with roughness standard R z = 50 μm.

Fig. 10
Fig. 10

Deviation from the expected linear relation in Fig. 8.

Fig. 11
Fig. 11

Deviation from the expected linear relation in Fig. 9.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E ( z , t ) = E 0 ( t ) exp { i ( 2 π ν ( t ) t - 2 π c ν ( t ) z ) } ,
E 0 ( t ) = A [ 1 + m cos ( 2 π f m t + ϕ ) ] , ν ( t ) = ν 0 + Δ ν cos ( 2 π f m t + ϕ ) ,
E ref ( z ref , t ) = α E 0 ( t ) exp [ i 2 π ν ( t ) ( t - z ref c ) ] ,
E obj ( z obj , t ) = β ρ E 0 ( t - τ ) exp [ i 2 π ν obj ( t ) ( t - z obj c ) ] ,
I ( z ref , z obj , t ) = E obj ( z obj , t ) + E ref ( z ref , t ) 2 .
I ( Δ z , t ) = α 2 I 0 t + β 2 ρ 2 I 0 ( t - τ ) + 2 ɛ × cos [ ω H t + 2 π λ 0 z ref - 2 π λ 0 z obj + 2 π c Δ ν Δ z cos ( ω m t + ϕ ) ] ,
u ( Δ z , t ) = 2 γ I 0 ( t ) U a ( t ) cos [ ω H t + 2 π λ 0 z ref - 2 π λ 0 z obj ϕ 1 ( z ref , z obj ) + 2 π c Δ ν Δ z cos ( ω m t + ϕ ) ϕ 2 ( Δ z , t ) ] ,
γ = α β ρ .
U VCO ( t ) = u ^ VCO cos [ ω VCO t + φ 0 + 2 π k VCO 0 t v u U LF ( τ ) d τ ] .
U LF ( Δ z , t ) = 1 2 u ^ VCO cos [ ( ω H - ω VCO ) t - φ 0 + ϕ 1 ( z ref , z obj ) + 2 π c Δ ν Δ z cos ( ω m t + ϕ ) - 2 π k VCO 0 t v u U LF ( Δ z , τ ) d τ ] .
U s ( Δ z , t ) = 2 π c Δ ν Δ z f m k VCO sin ( ω m t + ϕ ) .

Metrics