Abstract

A multiband wavelength-division-demultiplexing (WDDM) structure, which incorporates cascaded substrate-mode holograms, is presented. The method can be used to design a WDDM device that consists of two or more layers of fundamental units (i.e., substrate-mode holograms). The fundamental unit is based on a diffracted grating and a substrate that include angular dispersion, wavelength bandwidth, and total internal reflection, which can be used to separate optical signals of different wavelengths. We have designed and built a multiband WDDM device, incorporating cascaded substrate-mode holograms in dichromated gelatin.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Ishio, J. Minowa, K. Nosu, “Review and status of wavelength-division-multiplexing technology and its applications,” IEEE J. Lightwave Technol. LT-2, 448–463 (1984).
    [CrossRef]
  2. L. Jou, B. Metcalf, “Wavelength division multiplexing,” in Future Trends in Fiber Optic Communication, C. W. Kleekamp, ed., Proc. Soc. Photo-Opt. Instrum. Eng.340, 69–74 (1982).
  3. J. Lipson, W. J. Minford, E. J. Murphy, T. C. Rice, R. A. Linke, G. T. Harvey, “A six-channel wavelength multiplexer and demultiplexer for single mode systems,” IEEE J. Lightwave Technol. LT-3, 1159–1163 (1985).
    [CrossRef]
  4. M. Lida, H. Asakura, K. Eda, K. Hagiwara, “Narrow-band ten-channel optical multiplexer and demultiplexer using a Fourier diffraction grating,” Appl. Opt. 31, 4015–4057 (1992).
    [CrossRef]
  5. B. Moslehi, P. Harvey, J. Ng, T. Jannson, “Fiber-optic wavelength-division multiplexing and demultiplexing using volume holographic gratings,” Opt. Lett. 14, 1088–1090 (1989).
    [CrossRef] [PubMed]
  6. Y.-T. Huang, D.-C. Su, Y.-K. Tsai, “Wavelength-division-multiplexing and demultiplexing by using a substrate-mode grating pair,” Opt. Lett. 17, 1629–1631 (1992).
    [CrossRef] [PubMed]
  7. Y.-K. Tsai, Y.-T. Huang, D.-C. Su, “A reflection-type substrate-mode grating structure for wavelength-division-multi/demultiplexing,” Optik 97, 62–66 (1994).
  8. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  9. T. G. Georgekutty, H.-K. Liu, “Simplified dichromated gelatin hologram recording process,” Appl. Opt. 26, 372–376 (1987).
    [CrossRef] [PubMed]
  10. Y.-T. Huang, M. Kato, R. K. Kostuk, “Methods for fabricating substrate-mode holographic optical elements,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1211, 162–172 (1990).

1994 (1)

Y.-K. Tsai, Y.-T. Huang, D.-C. Su, “A reflection-type substrate-mode grating structure for wavelength-division-multi/demultiplexing,” Optik 97, 62–66 (1994).

1992 (2)

M. Lida, H. Asakura, K. Eda, K. Hagiwara, “Narrow-band ten-channel optical multiplexer and demultiplexer using a Fourier diffraction grating,” Appl. Opt. 31, 4015–4057 (1992).
[CrossRef]

Y.-T. Huang, D.-C. Su, Y.-K. Tsai, “Wavelength-division-multiplexing and demultiplexing by using a substrate-mode grating pair,” Opt. Lett. 17, 1629–1631 (1992).
[CrossRef] [PubMed]

1989 (1)

1987 (1)

1985 (1)

J. Lipson, W. J. Minford, E. J. Murphy, T. C. Rice, R. A. Linke, G. T. Harvey, “A six-channel wavelength multiplexer and demultiplexer for single mode systems,” IEEE J. Lightwave Technol. LT-3, 1159–1163 (1985).
[CrossRef]

1984 (1)

H. Ishio, J. Minowa, K. Nosu, “Review and status of wavelength-division-multiplexing technology and its applications,” IEEE J. Lightwave Technol. LT-2, 448–463 (1984).
[CrossRef]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Asakura, H.

M. Lida, H. Asakura, K. Eda, K. Hagiwara, “Narrow-band ten-channel optical multiplexer and demultiplexer using a Fourier diffraction grating,” Appl. Opt. 31, 4015–4057 (1992).
[CrossRef]

Eda, K.

M. Lida, H. Asakura, K. Eda, K. Hagiwara, “Narrow-band ten-channel optical multiplexer and demultiplexer using a Fourier diffraction grating,” Appl. Opt. 31, 4015–4057 (1992).
[CrossRef]

Georgekutty, T. G.

Hagiwara, K.

M. Lida, H. Asakura, K. Eda, K. Hagiwara, “Narrow-band ten-channel optical multiplexer and demultiplexer using a Fourier diffraction grating,” Appl. Opt. 31, 4015–4057 (1992).
[CrossRef]

Harvey, G. T.

J. Lipson, W. J. Minford, E. J. Murphy, T. C. Rice, R. A. Linke, G. T. Harvey, “A six-channel wavelength multiplexer and demultiplexer for single mode systems,” IEEE J. Lightwave Technol. LT-3, 1159–1163 (1985).
[CrossRef]

Harvey, P.

Huang, Y.-T.

Y.-K. Tsai, Y.-T. Huang, D.-C. Su, “A reflection-type substrate-mode grating structure for wavelength-division-multi/demultiplexing,” Optik 97, 62–66 (1994).

Y.-T. Huang, D.-C. Su, Y.-K. Tsai, “Wavelength-division-multiplexing and demultiplexing by using a substrate-mode grating pair,” Opt. Lett. 17, 1629–1631 (1992).
[CrossRef] [PubMed]

Y.-T. Huang, M. Kato, R. K. Kostuk, “Methods for fabricating substrate-mode holographic optical elements,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1211, 162–172 (1990).

Ishio, H.

H. Ishio, J. Minowa, K. Nosu, “Review and status of wavelength-division-multiplexing technology and its applications,” IEEE J. Lightwave Technol. LT-2, 448–463 (1984).
[CrossRef]

Jannson, T.

Jou, L.

L. Jou, B. Metcalf, “Wavelength division multiplexing,” in Future Trends in Fiber Optic Communication, C. W. Kleekamp, ed., Proc. Soc. Photo-Opt. Instrum. Eng.340, 69–74 (1982).

Kato, M.

Y.-T. Huang, M. Kato, R. K. Kostuk, “Methods for fabricating substrate-mode holographic optical elements,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1211, 162–172 (1990).

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Kostuk, R. K.

Y.-T. Huang, M. Kato, R. K. Kostuk, “Methods for fabricating substrate-mode holographic optical elements,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1211, 162–172 (1990).

Lida, M.

M. Lida, H. Asakura, K. Eda, K. Hagiwara, “Narrow-band ten-channel optical multiplexer and demultiplexer using a Fourier diffraction grating,” Appl. Opt. 31, 4015–4057 (1992).
[CrossRef]

Linke, R. A.

J. Lipson, W. J. Minford, E. J. Murphy, T. C. Rice, R. A. Linke, G. T. Harvey, “A six-channel wavelength multiplexer and demultiplexer for single mode systems,” IEEE J. Lightwave Technol. LT-3, 1159–1163 (1985).
[CrossRef]

Lipson, J.

J. Lipson, W. J. Minford, E. J. Murphy, T. C. Rice, R. A. Linke, G. T. Harvey, “A six-channel wavelength multiplexer and demultiplexer for single mode systems,” IEEE J. Lightwave Technol. LT-3, 1159–1163 (1985).
[CrossRef]

Liu, H.-K.

Metcalf, B.

L. Jou, B. Metcalf, “Wavelength division multiplexing,” in Future Trends in Fiber Optic Communication, C. W. Kleekamp, ed., Proc. Soc. Photo-Opt. Instrum. Eng.340, 69–74 (1982).

Minford, W. J.

J. Lipson, W. J. Minford, E. J. Murphy, T. C. Rice, R. A. Linke, G. T. Harvey, “A six-channel wavelength multiplexer and demultiplexer for single mode systems,” IEEE J. Lightwave Technol. LT-3, 1159–1163 (1985).
[CrossRef]

Minowa, J.

H. Ishio, J. Minowa, K. Nosu, “Review and status of wavelength-division-multiplexing technology and its applications,” IEEE J. Lightwave Technol. LT-2, 448–463 (1984).
[CrossRef]

Moslehi, B.

Murphy, E. J.

J. Lipson, W. J. Minford, E. J. Murphy, T. C. Rice, R. A. Linke, G. T. Harvey, “A six-channel wavelength multiplexer and demultiplexer for single mode systems,” IEEE J. Lightwave Technol. LT-3, 1159–1163 (1985).
[CrossRef]

Ng, J.

Nosu, K.

H. Ishio, J. Minowa, K. Nosu, “Review and status of wavelength-division-multiplexing technology and its applications,” IEEE J. Lightwave Technol. LT-2, 448–463 (1984).
[CrossRef]

Rice, T. C.

J. Lipson, W. J. Minford, E. J. Murphy, T. C. Rice, R. A. Linke, G. T. Harvey, “A six-channel wavelength multiplexer and demultiplexer for single mode systems,” IEEE J. Lightwave Technol. LT-3, 1159–1163 (1985).
[CrossRef]

Su, D.-C.

Y.-K. Tsai, Y.-T. Huang, D.-C. Su, “A reflection-type substrate-mode grating structure for wavelength-division-multi/demultiplexing,” Optik 97, 62–66 (1994).

Y.-T. Huang, D.-C. Su, Y.-K. Tsai, “Wavelength-division-multiplexing and demultiplexing by using a substrate-mode grating pair,” Opt. Lett. 17, 1629–1631 (1992).
[CrossRef] [PubMed]

Tsai, Y.-K.

Y.-K. Tsai, Y.-T. Huang, D.-C. Su, “A reflection-type substrate-mode grating structure for wavelength-division-multi/demultiplexing,” Optik 97, 62–66 (1994).

Y.-T. Huang, D.-C. Su, Y.-K. Tsai, “Wavelength-division-multiplexing and demultiplexing by using a substrate-mode grating pair,” Opt. Lett. 17, 1629–1631 (1992).
[CrossRef] [PubMed]

Appl. Opt. (2)

M. Lida, H. Asakura, K. Eda, K. Hagiwara, “Narrow-band ten-channel optical multiplexer and demultiplexer using a Fourier diffraction grating,” Appl. Opt. 31, 4015–4057 (1992).
[CrossRef]

T. G. Georgekutty, H.-K. Liu, “Simplified dichromated gelatin hologram recording process,” Appl. Opt. 26, 372–376 (1987).
[CrossRef] [PubMed]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

IEEE J. Lightwave Technol. (2)

H. Ishio, J. Minowa, K. Nosu, “Review and status of wavelength-division-multiplexing technology and its applications,” IEEE J. Lightwave Technol. LT-2, 448–463 (1984).
[CrossRef]

J. Lipson, W. J. Minford, E. J. Murphy, T. C. Rice, R. A. Linke, G. T. Harvey, “A six-channel wavelength multiplexer and demultiplexer for single mode systems,” IEEE J. Lightwave Technol. LT-3, 1159–1163 (1985).
[CrossRef]

Opt. Lett. (2)

Optik (1)

Y.-K. Tsai, Y.-T. Huang, D.-C. Su, “A reflection-type substrate-mode grating structure for wavelength-division-multi/demultiplexing,” Optik 97, 62–66 (1994).

Other (2)

L. Jou, B. Metcalf, “Wavelength division multiplexing,” in Future Trends in Fiber Optic Communication, C. W. Kleekamp, ed., Proc. Soc. Photo-Opt. Instrum. Eng.340, 69–74 (1982).

Y.-T. Huang, M. Kato, R. K. Kostuk, “Methods for fabricating substrate-mode holographic optical elements,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1211, 162–172 (1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Cascaded connection configuration of two-layer substrate-mode holograms for a WDDM.

Fig. 2
Fig. 2

Calculated s- and p-polarization diffraction efficiencies of substrate-mode gratings for center wavelengths of (a) 780, (b) 1050, (c) 1300, (d) 1550 nm.

Fig. 3
Fig. 3

Theoretical output efficiencies of incident light when it propagates through a two-layer structure for center wavelengths of 1300 and 1550 nm.

Fig. 4
Fig. 4

Cascaded structure of four-layer transmission-type grating pairs at center wavelengths of 780, 1050, 1300, and 1550 nm.

Fig. 5
Fig. 5

Spectral response of a four-layer structure at the output ends.

Fig. 6
Fig. 6

Experimental diffraction efficiencies of the WDDM device for center wavelengths of (a) 780, (b) 1300, and (c) 1550 nm. The near-center wavelength ranges were obtained directly from our diode laser system, whereas other data were extracted from the angular response as shown in Fig. 7.

Fig. 7
Fig. 7

Measured angular bandwidth of the fundamental units for center wavelengths of (a) 780, (b) 1300, and (c) 1550 nm.

Fig. 8
Fig. 8

Experimental spectral response of a two-layer structure for center wavelengths of 780 and 1300 nm.

Fig. 9
Fig. 9

Experimental spectral response of a two-layer structure for center wavelengths of 1300 and 1550 nm.

Fig. 10
Fig. 10

Experimental performance efficiencies of a three-layer structure for center wavelengths of 780, 1300, and 1550 nm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

η = sin 2 ( ν 2 + ξ 2 ) 1 / 2 1 + ξ 2 / ν 2 ,
ν = ν s = π n 1 d λ r ( cos θ r 1 cos θ r 2 ) 1 / 2 for s polarization ,
ν = ν p = ν s cos ( θ r 2 - θ r 1 ) for p polarization ,
ξ = ϑ d 2 cos θ r 2 ,

Metrics