Abstract

We report an algorithm that can be used to invert the radiance exiting the top and bottom of the atmosphere to yield the columnar optical properties of atmospheric aerosol under clear sky conditions over the oceans. The method is an augmentation of a similar algorithm presented by Wang and Gordon [Appl. Opt. 32, 4598 (1993)] that used only sky radiance, and therefore was incapable of retrieving the aerosol phase function at the large scattering angles that are of critical importance in remote sensing of oceanic and atmospheric properties with satellites. Well-known aerosol models were combined with radiative transfer theory to simulate pseudodata for testing of the algorithm. The tests suggest that it should be possible to retrieve the aerosol phase function and the aerosol single-scattering albedo accurately over the visible spectrum at aerosol optical thicknesses as large as 2.0. The algorithm is capable of retrievals with such large optical thicknesses because all significant orders of multiple scattering are included. We believe that combining an algorithm of this type with surface-based and high-altitude aircraft-based radiance measurements could be useful for studying aerosol columnar optical properties over oceans and large lakes. The use of the retrieval method is possible over the ocean because, unlike the land surface, the albedo of the ocean is low and spatially uniform.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Wang, H. R. Gordon, “Retrieval of the columnar aerosol phase function and single scattering albedo from sky radiance over the ocean: simulations,” Appl. Opt. 32, 4598–4609 (1993).
    [CrossRef] [PubMed]
  2. M. D. King, B. M. Herman, “Determination of the ground albedo and the index of absorption of atmospheric particulates by remote sensing: Part I. Theory,” J. Atmos. Sci. 36, 163–173 (1979).
    [CrossRef]
  3. M. A. Box, A. Deepak, “Retrieval of aerosol size distributions by inversion of simulated aureole data in the presence of multiple scattering,” Appl. Opt. 18, 1376–1382 (1979).
    [CrossRef] [PubMed]
  4. M. A. Box, A. Deepak, “An approximation to multiple scattering in the Earth's atmosphere: almucantar radiance formulation,” J. Atmos. Sci. 38, 1037–1048 (1981).
    [CrossRef]
  5. T. Nakajima, M. Tanaka, T. Yamauchi, “Retrieval of the optical properties of aerosols from aureole and extinction data,” Appl. Opt. 22, 2951–2959 (1983).
    [CrossRef] [PubMed]
  6. M. Wendisch, W. von Hoyningen-Huene, “High speed version of the method of ‘successive order of scattering’ and its application to remote sensing,” Beitr. Phys. Atmos. 64, 83–91 (1991).
  7. P. Koepke, “Vicarious satellite calibration in the solar spectral range by means of calculated radiances and its application to Meteosat,” Appl. Opt. 21, 2845–2854 (1982).
    [CrossRef] [PubMed]
  8. H. R. Gordon, J. W. Brown, O.B. Brown, R. H. Evans, D. K. Clark, “Nimbus 7 Coastal Zone Color Scanner: reduction of its radiometric sensitivity with time,” Appl. Opt. 22, 3929– 3931 (1983).
    [CrossRef] [PubMed]
  9. R. S. Fraser, Y. J. Kaufman, “Calibration of satellite sensors after launch,” Appl. Opt. 25, 1177–1185 (1986).
    [CrossRef] [PubMed]
  10. P. N. Slater, S. F. Biggar, R. G. Holm, R. D. Jackson, Y. Mao, M. S. Moran, J. M. Palmer, B. Yuan, “Reflectance- and radiance-based methods for the in-flight absolute calibration of multispectral sensors,” Remote Sensing of Environ. 22, 11–37 (1987).
    [CrossRef]
  11. E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” AFGL-TR-79-0214 (U.S. Air Force Geophysics Laboratory, Hanscomb Air Force Base, Mass., 1979).

1993

1991

M. Wendisch, W. von Hoyningen-Huene, “High speed version of the method of ‘successive order of scattering’ and its application to remote sensing,” Beitr. Phys. Atmos. 64, 83–91 (1991).

1987

P. N. Slater, S. F. Biggar, R. G. Holm, R. D. Jackson, Y. Mao, M. S. Moran, J. M. Palmer, B. Yuan, “Reflectance- and radiance-based methods for the in-flight absolute calibration of multispectral sensors,” Remote Sensing of Environ. 22, 11–37 (1987).
[CrossRef]

1986

1983

1982

1981

M. A. Box, A. Deepak, “An approximation to multiple scattering in the Earth's atmosphere: almucantar radiance formulation,” J. Atmos. Sci. 38, 1037–1048 (1981).
[CrossRef]

1979

M. D. King, B. M. Herman, “Determination of the ground albedo and the index of absorption of atmospheric particulates by remote sensing: Part I. Theory,” J. Atmos. Sci. 36, 163–173 (1979).
[CrossRef]

M. A. Box, A. Deepak, “Retrieval of aerosol size distributions by inversion of simulated aureole data in the presence of multiple scattering,” Appl. Opt. 18, 1376–1382 (1979).
[CrossRef] [PubMed]

Biggar, S. F.

P. N. Slater, S. F. Biggar, R. G. Holm, R. D. Jackson, Y. Mao, M. S. Moran, J. M. Palmer, B. Yuan, “Reflectance- and radiance-based methods for the in-flight absolute calibration of multispectral sensors,” Remote Sensing of Environ. 22, 11–37 (1987).
[CrossRef]

Box, M. A.

M. A. Box, A. Deepak, “An approximation to multiple scattering in the Earth's atmosphere: almucantar radiance formulation,” J. Atmos. Sci. 38, 1037–1048 (1981).
[CrossRef]

M. A. Box, A. Deepak, “Retrieval of aerosol size distributions by inversion of simulated aureole data in the presence of multiple scattering,” Appl. Opt. 18, 1376–1382 (1979).
[CrossRef] [PubMed]

Brown, J. W.

Brown, O.B.

Clark, D. K.

Deepak, A.

M. A. Box, A. Deepak, “An approximation to multiple scattering in the Earth's atmosphere: almucantar radiance formulation,” J. Atmos. Sci. 38, 1037–1048 (1981).
[CrossRef]

M. A. Box, A. Deepak, “Retrieval of aerosol size distributions by inversion of simulated aureole data in the presence of multiple scattering,” Appl. Opt. 18, 1376–1382 (1979).
[CrossRef] [PubMed]

Evans, R. H.

Fenn, R. W.

E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” AFGL-TR-79-0214 (U.S. Air Force Geophysics Laboratory, Hanscomb Air Force Base, Mass., 1979).

Fraser, R. S.

Gordon, H. R.

Herman, B. M.

M. D. King, B. M. Herman, “Determination of the ground albedo and the index of absorption of atmospheric particulates by remote sensing: Part I. Theory,” J. Atmos. Sci. 36, 163–173 (1979).
[CrossRef]

Holm, R. G.

P. N. Slater, S. F. Biggar, R. G. Holm, R. D. Jackson, Y. Mao, M. S. Moran, J. M. Palmer, B. Yuan, “Reflectance- and radiance-based methods for the in-flight absolute calibration of multispectral sensors,” Remote Sensing of Environ. 22, 11–37 (1987).
[CrossRef]

Jackson, R. D.

P. N. Slater, S. F. Biggar, R. G. Holm, R. D. Jackson, Y. Mao, M. S. Moran, J. M. Palmer, B. Yuan, “Reflectance- and radiance-based methods for the in-flight absolute calibration of multispectral sensors,” Remote Sensing of Environ. 22, 11–37 (1987).
[CrossRef]

Kaufman, Y. J.

King, M. D.

M. D. King, B. M. Herman, “Determination of the ground albedo and the index of absorption of atmospheric particulates by remote sensing: Part I. Theory,” J. Atmos. Sci. 36, 163–173 (1979).
[CrossRef]

Koepke, P.

Mao, Y.

P. N. Slater, S. F. Biggar, R. G. Holm, R. D. Jackson, Y. Mao, M. S. Moran, J. M. Palmer, B. Yuan, “Reflectance- and radiance-based methods for the in-flight absolute calibration of multispectral sensors,” Remote Sensing of Environ. 22, 11–37 (1987).
[CrossRef]

Moran, M. S.

P. N. Slater, S. F. Biggar, R. G. Holm, R. D. Jackson, Y. Mao, M. S. Moran, J. M. Palmer, B. Yuan, “Reflectance- and radiance-based methods for the in-flight absolute calibration of multispectral sensors,” Remote Sensing of Environ. 22, 11–37 (1987).
[CrossRef]

Nakajima, T.

Palmer, J. M.

P. N. Slater, S. F. Biggar, R. G. Holm, R. D. Jackson, Y. Mao, M. S. Moran, J. M. Palmer, B. Yuan, “Reflectance- and radiance-based methods for the in-flight absolute calibration of multispectral sensors,” Remote Sensing of Environ. 22, 11–37 (1987).
[CrossRef]

Shettle, E. P.

E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” AFGL-TR-79-0214 (U.S. Air Force Geophysics Laboratory, Hanscomb Air Force Base, Mass., 1979).

Slater, P. N.

P. N. Slater, S. F. Biggar, R. G. Holm, R. D. Jackson, Y. Mao, M. S. Moran, J. M. Palmer, B. Yuan, “Reflectance- and radiance-based methods for the in-flight absolute calibration of multispectral sensors,” Remote Sensing of Environ. 22, 11–37 (1987).
[CrossRef]

Tanaka, M.

von Hoyningen-Huene, W.

M. Wendisch, W. von Hoyningen-Huene, “High speed version of the method of ‘successive order of scattering’ and its application to remote sensing,” Beitr. Phys. Atmos. 64, 83–91 (1991).

Wang, M.

Wendisch, M.

M. Wendisch, W. von Hoyningen-Huene, “High speed version of the method of ‘successive order of scattering’ and its application to remote sensing,” Beitr. Phys. Atmos. 64, 83–91 (1991).

Yamauchi, T.

Yuan, B.

P. N. Slater, S. F. Biggar, R. G. Holm, R. D. Jackson, Y. Mao, M. S. Moran, J. M. Palmer, B. Yuan, “Reflectance- and radiance-based methods for the in-flight absolute calibration of multispectral sensors,” Remote Sensing of Environ. 22, 11–37 (1987).
[CrossRef]

Appl. Opt.

Beitr. Phys. Atmos.

M. Wendisch, W. von Hoyningen-Huene, “High speed version of the method of ‘successive order of scattering’ and its application to remote sensing,” Beitr. Phys. Atmos. 64, 83–91 (1991).

J. Atmos. Sci.

M. A. Box, A. Deepak, “An approximation to multiple scattering in the Earth's atmosphere: almucantar radiance formulation,” J. Atmos. Sci. 38, 1037–1048 (1981).
[CrossRef]

M. D. King, B. M. Herman, “Determination of the ground albedo and the index of absorption of atmospheric particulates by remote sensing: Part I. Theory,” J. Atmos. Sci. 36, 163–173 (1979).
[CrossRef]

Remote Sensing of Environ.

P. N. Slater, S. F. Biggar, R. G. Holm, R. D. Jackson, Y. Mao, M. S. Moran, J. M. Palmer, B. Yuan, “Reflectance- and radiance-based methods for the in-flight absolute calibration of multispectral sensors,” Remote Sensing of Environ. 22, 11–37 (1987).
[CrossRef]

Other

E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” AFGL-TR-79-0214 (U.S. Air Force Geophysics Laboratory, Hanscomb Air Force Base, Mass., 1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Comparison between the true ω0P(θ) (solid curves) and the retrieved ω0P(θ) (circles) for the Maritime aerosol model with a relative humidity of 99% and θ0 = 60°: (a) 412 nm, (b) 865 nm. Lower curves, τa = 0.2; upper curves, τa = 2.0. Values for τa = 2.0 are ×10.

Fig. 2
Fig. 2

Percent error in ω0P(θ) for τa = 0.2 (dashed curves) and τa = 2.0 (solid curves): (a) 412 nm, (b) 865 nm.

Metrics