Abstract

A new single-pulse, two-line laser-induced O2 fluorescence (LIF) temperature-measurement technique was demonstrated. The fluorescence spectrum obtained with multichannel detection following simultaneous excitation of two coincident transitions in the 0–6 and the 2–7 bands of the B3uX3g Schumann–Runge system was used to determine the gas temperature. The rms error of 100-pulse average LIF temperature measurements, referenced to their corresponding thermocouple measurements, was 1.3% over a temperature range of 1300–1800 K in atmospheric air. Photon shot noise was found to be the primary source of uncertainty for these measurements in a quiescent environment. Single-pulse temperature-measurement uncertainties (1 σ) ranged from approximately 13% at 1300 K to 7% at 1800 K.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Pitz, R. Cattolica, F. Robben, L. Talbot, “Temperature and density from Rayleigh scattering,” Combust. Flame 27, 313–320 (1976).
    [CrossRef]
  2. W. Stricker, “Local temperature measurement in flames by laser Raman spectroscopy,” Combust. Flame 27, 133–136 (1976).
    [CrossRef]
  3. A. C. Eckbreth, “Coherent anti-Stokes Raman spectroscopy,” in Laser Diagnostics for Combustion Temperature and Species, A. K. Gupta, D. G. Lilley, eds., Vol. 7 of Energy and Engineering Science Series (Abacus, Cambridge, Mass., 1988), Chap. 6, pp. 220–300.
  4. A. C. Eckbreth, “Laser-induced fluorescence spectroscopy (LIFS),” in Laser Diagnostics for CombustionTemperature and Species, A. K. Gupta, D. G. Lilley, eds., Vol. 7 of Energy and Engineering Science Series (Abacus, Cambridge, Mass., 1988), Chap. 7, pp. 301–349.
  5. G. Laufer, R. L. McKenzie, D. G. Fletcher, “Method for measuring temperature and densities in hypersonic wind tunnel flows using laser-induced O2 fluorescence,” Appl. Opt. 27, 4873–4883 (1990).
    [CrossRef]
  6. D. G. Fletcher, R. L. McKenzie, “Single-pulse measurements of density and temperature in a turbulent, supersonic flow using UV laser spectroscopy,” Opt. Lett. 17, 1614–1616 (1992).
    [CrossRef] [PubMed]
  7. K. R. Gross, R. L. McKenzie, R. Logan, “Measurements of temperature, density, pressure, and their fluctuations in supersonic turbulence using laser-induced fluorescence,” Exp. Fluids 5, 372–380 (1987).
    [CrossRef]
  8. J. M. Seitzman, R. K. Hanson, P. A. DeBarber, C. F. Hess, “Application of quantitative two-line OH planar laser-induced fluorescence for temporally resolved planar thermometry in reacting flows,” Appl. Opt. 33, 4000–4012 (1994).
    [CrossRef] [PubMed]
  9. B. K. McMillin, J. M. Seitzman, R. K. Hanson, “Comparison of NO and OH planar laser-induced fluorescence temperature measurements in scramjet model flowfields,” AIAA J. 32, 1945–1952 (1994).
    [CrossRef]
  10. B. K. McMillin, J. L. Palmer, R. K. Hanson, “Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in supersonic cross flow,” Appl. Opt. 32, 7532–7545 (1993).
    [CrossRef] [PubMed]
  11. K. Shibuya, F. Stuhl, “Single vibronic emission from NO B2Π (v′ = 7) and O2B ³∑u− (v′ = 4) excited by 193 nm ArF laser,” J. Chem. Phys. 75, 1184–1186 (1982).
    [CrossRef]
  12. P. Andresen, A. Bath, W. Gröger, H. W. Lülf, G. Meijer, J. J. ter Meulen, “Laser-induced fluorescence with tunable excimer lasers as a possible method for instantaneous temperature field measurements at high pressures: checks with an atmospheric flame,” Appl. Opt. 27, 365–378 (1988).
    [CrossRef] [PubMed]
  13. R. A. Copeland, P. C. Cosby, D. R. Crosley, J. B. Jeffries, T. G. Slanger, “Vibrationally excited O2 in flames: measurements on v″ = 9–11 by laser-induced fluorescence,” J. Chem. Phys. 86, 2500–2504 (1987).
    [CrossRef]
  14. J. E. M. Goldsmith, R. J. M. Anderson, “Laser-induced fluorescence spectroscopy and imaging of molecular oxygen in flames,” Opt. Lett. 11, 67–69 (1986).
    [CrossRef] [PubMed]
  15. I. J. Wysong, J. B. Jeffries, D. R. Crosley, “Laser-induced fluorescence of O (3p3P), O2, and NO near 226 nm: photolytic interferences and simultaneous excitation in flames,” Opt. Lett. 14, 767–769 (1989).
    [CrossRef] [PubMed]
  16. G. A. Massey, C. J. Lemon, “Feasibility of measuring temperature and density fluctuations in air using laser-induced O2 fluorescence,” IEEE J. Quantum Electron. QE-20, 454–457 (1984).
    [CrossRef]
  17. M. P. Lee, P. H. Paul, R. K. Hanson, “Quantitative imaging of temperature fields in air using planar laser-induced fluorescence of O2,” Opt. Lett. 12, 75–77 (1987).
    [CrossRef] [PubMed]
  18. R. B. Miles, P. J. Howard, E. C. Markovitz, G. J. Roth, “Proposed single-pulse two-dimensional temperature and density measurements of oxygen and air,” Opt. Lett. 13, 195–197 (1988).
    [CrossRef] [PubMed]
  19. M. S. Smith, L. L. Price, W. D. Williams, “Laser-induced fluorescence diagnostics using a two-line excitation method,” AIAA J. 31, 478–482 (1993).
    [CrossRef]
  20. J. H. Grinstead, G. Laufer, “Requirements for temperature measurements in nonequilibrium flows using laser-induced O2 fluorescence,” in Proceedings of the 14th International Conference on Instrumentation for Aerospace Simulation Facilities (Institute of Electrical and Electronics Engineers, New York, 1991), pp. 262–269.
  21. J. H. Grinstead, G. Laufer, J. C. McDaniel, “Measurements of KrF laser-induced O2 fluorescence in high-temperature atmospheric air,” in AIAA 31st Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington D.C., 1993), paper AIAA 93-0045.
  22. P. H. Krupenie, “The spectrum of molecular oxygen,” J. Phys. Chem. Ref. Data 1, 423–534 (1972).
    [CrossRef]
  23. P. Andresen, H. Schlüter, D. Wolff, H. Voges, A. Koch, W. Hentschel, W. Opperman, E. Rothe, “Identification and imaging of OH (v″ = 0) and O2 (v″ = 6 or 7) in an automobile spark-ignition engine using a tunable KrF excimer laser,” Appl. Opt. 31, 7684–7689 (1992).
    [CrossRef] [PubMed]
  24. A. Arnold, W. Ketterle, H. Becker, J. Wolfrum, “Simultaneous single-shot imaging of OH and O2 using a two-wavelength excimer laser,” Appl. Phys. B 51, 99–102 (1990).
    [CrossRef]
  25. J. H. Grinstead, G. Laufer, J. C. McDaniel, “Rotational temperature measurement in high-temperature air using KrF laser-induced O2 fluorescence,” Appl. Phys. B 57, 393–396 (1993).
    [CrossRef]
  26. P. C. Cosby, H. Park, R. A. Copeland, T. G. Slanger, “Predissociation linewidths in O2B ³∑u− (v=0,2),” J. Chem. Phys. 98, 5117–5133 (1993).
    [CrossRef]
  27. K. Yoshino, D. E. Freeman, W. H. Parkinson, “Atlas of the Schumann–Runge bands of O2 in the wavelength region 175–205 nm,” J. Phys. Chem. Ref. Data 13, 207–227 (1984).
    [CrossRef]
  28. J. A. Wehrmeyer, T-S. Cheng, R. W. Pitz, “Raman scattering measurements in flames using a tunable KrF excimer laser,” Appl. Opt. 31, 1495–1504 (1992).
    [CrossRef] [PubMed]
  29. J. H. Grinstead, G. Laufer, R. H. Krauss, J. C. McDaniel, “Calibration source for OH laser-induced fluorescence-density measurements with thermally dissociated H2O in atmospheric air,” Appl. Opt. 33, 1115–1119 (1994).
    [CrossRef] [PubMed]
  30. A. S-C. Cheung, K. Yoshino, W. H. Parkinson, D. E. Freeman, “Molecular spectroscopic constants of O2(B3∑u−): the upper state of the Schumann–Runge bands,” J. Mol. Spectrosc. 119, 1–10 (1986).
    [CrossRef]
  31. P. C. Cosby, SRI International, Menlo Park, Calif, 94025 (personal communication, 1990).
  32. M. W. P. Cann, R. W. Nicholls, W. F. J. Evans, J. L. Kohl, R. Kurucz, W. H. Parkinson, E. M. Reeves, “High resolution atmospheric transmission calculations down to 28.7 km in the 200–243 nm spectral range,” Appl. Opt. 18, 964–977 (1979).
    [CrossRef] [PubMed]
  33. J. H. Grinstead, “Temperature measurement in high-temperature gases using KrF laser-induced O2 fluorescence,” Ph.D. dissertation (Department of Mechanical, Aerospace, and Nuclear Engineering, University of Virginia, Charlottesville, Va., 1995).
  34. A. S-C. Cheung, D. K-W. Mok, Y. Sun, D. E. Freeman, “The potential-energy curve for the B3∑u− state of oxygen and accurate Franck–Condon factors for the Schumann–Runge bands,” J. Mol. Spectrosc. 163, 9–18 (1994).
    [CrossRef]
  35. J. B. Tatum, “Hönl–London factors for 3Σ±–3Σ± transitions,” Can. J. Phys. 44, 2944–2946 (1966).
    [CrossRef]
  36. E. L. Dereniak, D. G. Crowe, Optical Radiation Detectors (Wiley, New York, 1984), Chap. 2, pp. 18–19.
  37. J. H. Grinstead, T. M. Quagliaroli, G. Laufer, J. C. McDaniel, “Single-pulse temperature measurements in a turbulent flame using KrF laser-induced O2 fluorescence,” in AIAA 33rd Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington, D.C., 1995), paper AIAA 95-00423.

1994 (4)

J. M. Seitzman, R. K. Hanson, P. A. DeBarber, C. F. Hess, “Application of quantitative two-line OH planar laser-induced fluorescence for temporally resolved planar thermometry in reacting flows,” Appl. Opt. 33, 4000–4012 (1994).
[CrossRef] [PubMed]

B. K. McMillin, J. M. Seitzman, R. K. Hanson, “Comparison of NO and OH planar laser-induced fluorescence temperature measurements in scramjet model flowfields,” AIAA J. 32, 1945–1952 (1994).
[CrossRef]

J. H. Grinstead, G. Laufer, R. H. Krauss, J. C. McDaniel, “Calibration source for OH laser-induced fluorescence-density measurements with thermally dissociated H2O in atmospheric air,” Appl. Opt. 33, 1115–1119 (1994).
[CrossRef] [PubMed]

A. S-C. Cheung, D. K-W. Mok, Y. Sun, D. E. Freeman, “The potential-energy curve for the B3∑u− state of oxygen and accurate Franck–Condon factors for the Schumann–Runge bands,” J. Mol. Spectrosc. 163, 9–18 (1994).
[CrossRef]

1993 (4)

J. H. Grinstead, G. Laufer, J. C. McDaniel, “Rotational temperature measurement in high-temperature air using KrF laser-induced O2 fluorescence,” Appl. Phys. B 57, 393–396 (1993).
[CrossRef]

P. C. Cosby, H. Park, R. A. Copeland, T. G. Slanger, “Predissociation linewidths in O2B ³∑u− (v=0,2),” J. Chem. Phys. 98, 5117–5133 (1993).
[CrossRef]

B. K. McMillin, J. L. Palmer, R. K. Hanson, “Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in supersonic cross flow,” Appl. Opt. 32, 7532–7545 (1993).
[CrossRef] [PubMed]

M. S. Smith, L. L. Price, W. D. Williams, “Laser-induced fluorescence diagnostics using a two-line excitation method,” AIAA J. 31, 478–482 (1993).
[CrossRef]

1992 (3)

1990 (2)

A. Arnold, W. Ketterle, H. Becker, J. Wolfrum, “Simultaneous single-shot imaging of OH and O2 using a two-wavelength excimer laser,” Appl. Phys. B 51, 99–102 (1990).
[CrossRef]

G. Laufer, R. L. McKenzie, D. G. Fletcher, “Method for measuring temperature and densities in hypersonic wind tunnel flows using laser-induced O2 fluorescence,” Appl. Opt. 27, 4873–4883 (1990).
[CrossRef]

1989 (1)

1988 (2)

1987 (3)

R. A. Copeland, P. C. Cosby, D. R. Crosley, J. B. Jeffries, T. G. Slanger, “Vibrationally excited O2 in flames: measurements on v″ = 9–11 by laser-induced fluorescence,” J. Chem. Phys. 86, 2500–2504 (1987).
[CrossRef]

M. P. Lee, P. H. Paul, R. K. Hanson, “Quantitative imaging of temperature fields in air using planar laser-induced fluorescence of O2,” Opt. Lett. 12, 75–77 (1987).
[CrossRef] [PubMed]

K. R. Gross, R. L. McKenzie, R. Logan, “Measurements of temperature, density, pressure, and their fluctuations in supersonic turbulence using laser-induced fluorescence,” Exp. Fluids 5, 372–380 (1987).
[CrossRef]

1986 (2)

J. E. M. Goldsmith, R. J. M. Anderson, “Laser-induced fluorescence spectroscopy and imaging of molecular oxygen in flames,” Opt. Lett. 11, 67–69 (1986).
[CrossRef] [PubMed]

A. S-C. Cheung, K. Yoshino, W. H. Parkinson, D. E. Freeman, “Molecular spectroscopic constants of O2(B3∑u−): the upper state of the Schumann–Runge bands,” J. Mol. Spectrosc. 119, 1–10 (1986).
[CrossRef]

1984 (2)

K. Yoshino, D. E. Freeman, W. H. Parkinson, “Atlas of the Schumann–Runge bands of O2 in the wavelength region 175–205 nm,” J. Phys. Chem. Ref. Data 13, 207–227 (1984).
[CrossRef]

G. A. Massey, C. J. Lemon, “Feasibility of measuring temperature and density fluctuations in air using laser-induced O2 fluorescence,” IEEE J. Quantum Electron. QE-20, 454–457 (1984).
[CrossRef]

1982 (1)

K. Shibuya, F. Stuhl, “Single vibronic emission from NO B2Π (v′ = 7) and O2B ³∑u− (v′ = 4) excited by 193 nm ArF laser,” J. Chem. Phys. 75, 1184–1186 (1982).
[CrossRef]

1979 (1)

1976 (2)

R. W. Pitz, R. Cattolica, F. Robben, L. Talbot, “Temperature and density from Rayleigh scattering,” Combust. Flame 27, 313–320 (1976).
[CrossRef]

W. Stricker, “Local temperature measurement in flames by laser Raman spectroscopy,” Combust. Flame 27, 133–136 (1976).
[CrossRef]

1972 (1)

P. H. Krupenie, “The spectrum of molecular oxygen,” J. Phys. Chem. Ref. Data 1, 423–534 (1972).
[CrossRef]

1966 (1)

J. B. Tatum, “Hönl–London factors for 3Σ±–3Σ± transitions,” Can. J. Phys. 44, 2944–2946 (1966).
[CrossRef]

Anderson, R. J. M.

Andresen, P.

Arnold, A.

A. Arnold, W. Ketterle, H. Becker, J. Wolfrum, “Simultaneous single-shot imaging of OH and O2 using a two-wavelength excimer laser,” Appl. Phys. B 51, 99–102 (1990).
[CrossRef]

Bath, A.

Becker, H.

A. Arnold, W. Ketterle, H. Becker, J. Wolfrum, “Simultaneous single-shot imaging of OH and O2 using a two-wavelength excimer laser,” Appl. Phys. B 51, 99–102 (1990).
[CrossRef]

Cann, M. W. P.

Cattolica, R.

R. W. Pitz, R. Cattolica, F. Robben, L. Talbot, “Temperature and density from Rayleigh scattering,” Combust. Flame 27, 313–320 (1976).
[CrossRef]

Cheng, T-S.

Cheung, A. S-C.

A. S-C. Cheung, D. K-W. Mok, Y. Sun, D. E. Freeman, “The potential-energy curve for the B3∑u− state of oxygen and accurate Franck–Condon factors for the Schumann–Runge bands,” J. Mol. Spectrosc. 163, 9–18 (1994).
[CrossRef]

A. S-C. Cheung, K. Yoshino, W. H. Parkinson, D. E. Freeman, “Molecular spectroscopic constants of O2(B3∑u−): the upper state of the Schumann–Runge bands,” J. Mol. Spectrosc. 119, 1–10 (1986).
[CrossRef]

Copeland, R. A.

P. C. Cosby, H. Park, R. A. Copeland, T. G. Slanger, “Predissociation linewidths in O2B ³∑u− (v=0,2),” J. Chem. Phys. 98, 5117–5133 (1993).
[CrossRef]

R. A. Copeland, P. C. Cosby, D. R. Crosley, J. B. Jeffries, T. G. Slanger, “Vibrationally excited O2 in flames: measurements on v″ = 9–11 by laser-induced fluorescence,” J. Chem. Phys. 86, 2500–2504 (1987).
[CrossRef]

Cosby, P. C.

P. C. Cosby, H. Park, R. A. Copeland, T. G. Slanger, “Predissociation linewidths in O2B ³∑u− (v=0,2),” J. Chem. Phys. 98, 5117–5133 (1993).
[CrossRef]

R. A. Copeland, P. C. Cosby, D. R. Crosley, J. B. Jeffries, T. G. Slanger, “Vibrationally excited O2 in flames: measurements on v″ = 9–11 by laser-induced fluorescence,” J. Chem. Phys. 86, 2500–2504 (1987).
[CrossRef]

P. C. Cosby, SRI International, Menlo Park, Calif, 94025 (personal communication, 1990).

Crosley, D. R.

I. J. Wysong, J. B. Jeffries, D. R. Crosley, “Laser-induced fluorescence of O (3p3P), O2, and NO near 226 nm: photolytic interferences and simultaneous excitation in flames,” Opt. Lett. 14, 767–769 (1989).
[CrossRef] [PubMed]

R. A. Copeland, P. C. Cosby, D. R. Crosley, J. B. Jeffries, T. G. Slanger, “Vibrationally excited O2 in flames: measurements on v″ = 9–11 by laser-induced fluorescence,” J. Chem. Phys. 86, 2500–2504 (1987).
[CrossRef]

Crowe, D. G.

E. L. Dereniak, D. G. Crowe, Optical Radiation Detectors (Wiley, New York, 1984), Chap. 2, pp. 18–19.

DeBarber, P. A.

Dereniak, E. L.

E. L. Dereniak, D. G. Crowe, Optical Radiation Detectors (Wiley, New York, 1984), Chap. 2, pp. 18–19.

Eckbreth, A. C.

A. C. Eckbreth, “Coherent anti-Stokes Raman spectroscopy,” in Laser Diagnostics for Combustion Temperature and Species, A. K. Gupta, D. G. Lilley, eds., Vol. 7 of Energy and Engineering Science Series (Abacus, Cambridge, Mass., 1988), Chap. 6, pp. 220–300.

A. C. Eckbreth, “Laser-induced fluorescence spectroscopy (LIFS),” in Laser Diagnostics for CombustionTemperature and Species, A. K. Gupta, D. G. Lilley, eds., Vol. 7 of Energy and Engineering Science Series (Abacus, Cambridge, Mass., 1988), Chap. 7, pp. 301–349.

Evans, W. F. J.

Fletcher, D. G.

D. G. Fletcher, R. L. McKenzie, “Single-pulse measurements of density and temperature in a turbulent, supersonic flow using UV laser spectroscopy,” Opt. Lett. 17, 1614–1616 (1992).
[CrossRef] [PubMed]

G. Laufer, R. L. McKenzie, D. G. Fletcher, “Method for measuring temperature and densities in hypersonic wind tunnel flows using laser-induced O2 fluorescence,” Appl. Opt. 27, 4873–4883 (1990).
[CrossRef]

Freeman, D. E.

A. S-C. Cheung, D. K-W. Mok, Y. Sun, D. E. Freeman, “The potential-energy curve for the B3∑u− state of oxygen and accurate Franck–Condon factors for the Schumann–Runge bands,” J. Mol. Spectrosc. 163, 9–18 (1994).
[CrossRef]

A. S-C. Cheung, K. Yoshino, W. H. Parkinson, D. E. Freeman, “Molecular spectroscopic constants of O2(B3∑u−): the upper state of the Schumann–Runge bands,” J. Mol. Spectrosc. 119, 1–10 (1986).
[CrossRef]

K. Yoshino, D. E. Freeman, W. H. Parkinson, “Atlas of the Schumann–Runge bands of O2 in the wavelength region 175–205 nm,” J. Phys. Chem. Ref. Data 13, 207–227 (1984).
[CrossRef]

Goldsmith, J. E. M.

Grinstead, J. H.

J. H. Grinstead, G. Laufer, R. H. Krauss, J. C. McDaniel, “Calibration source for OH laser-induced fluorescence-density measurements with thermally dissociated H2O in atmospheric air,” Appl. Opt. 33, 1115–1119 (1994).
[CrossRef] [PubMed]

J. H. Grinstead, G. Laufer, J. C. McDaniel, “Rotational temperature measurement in high-temperature air using KrF laser-induced O2 fluorescence,” Appl. Phys. B 57, 393–396 (1993).
[CrossRef]

J. H. Grinstead, T. M. Quagliaroli, G. Laufer, J. C. McDaniel, “Single-pulse temperature measurements in a turbulent flame using KrF laser-induced O2 fluorescence,” in AIAA 33rd Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington, D.C., 1995), paper AIAA 95-00423.

J. H. Grinstead, “Temperature measurement in high-temperature gases using KrF laser-induced O2 fluorescence,” Ph.D. dissertation (Department of Mechanical, Aerospace, and Nuclear Engineering, University of Virginia, Charlottesville, Va., 1995).

J. H. Grinstead, G. Laufer, “Requirements for temperature measurements in nonequilibrium flows using laser-induced O2 fluorescence,” in Proceedings of the 14th International Conference on Instrumentation for Aerospace Simulation Facilities (Institute of Electrical and Electronics Engineers, New York, 1991), pp. 262–269.

J. H. Grinstead, G. Laufer, J. C. McDaniel, “Measurements of KrF laser-induced O2 fluorescence in high-temperature atmospheric air,” in AIAA 31st Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington D.C., 1993), paper AIAA 93-0045.

Gröger, W.

Gross, K. R.

K. R. Gross, R. L. McKenzie, R. Logan, “Measurements of temperature, density, pressure, and their fluctuations in supersonic turbulence using laser-induced fluorescence,” Exp. Fluids 5, 372–380 (1987).
[CrossRef]

Hanson, R. K.

Hentschel, W.

Hess, C. F.

Howard, P. J.

Jeffries, J. B.

I. J. Wysong, J. B. Jeffries, D. R. Crosley, “Laser-induced fluorescence of O (3p3P), O2, and NO near 226 nm: photolytic interferences and simultaneous excitation in flames,” Opt. Lett. 14, 767–769 (1989).
[CrossRef] [PubMed]

R. A. Copeland, P. C. Cosby, D. R. Crosley, J. B. Jeffries, T. G. Slanger, “Vibrationally excited O2 in flames: measurements on v″ = 9–11 by laser-induced fluorescence,” J. Chem. Phys. 86, 2500–2504 (1987).
[CrossRef]

Ketterle, W.

A. Arnold, W. Ketterle, H. Becker, J. Wolfrum, “Simultaneous single-shot imaging of OH and O2 using a two-wavelength excimer laser,” Appl. Phys. B 51, 99–102 (1990).
[CrossRef]

Koch, A.

Kohl, J. L.

Krauss, R. H.

Krupenie, P. H.

P. H. Krupenie, “The spectrum of molecular oxygen,” J. Phys. Chem. Ref. Data 1, 423–534 (1972).
[CrossRef]

Kurucz, R.

Laufer, G.

J. H. Grinstead, G. Laufer, R. H. Krauss, J. C. McDaniel, “Calibration source for OH laser-induced fluorescence-density measurements with thermally dissociated H2O in atmospheric air,” Appl. Opt. 33, 1115–1119 (1994).
[CrossRef] [PubMed]

J. H. Grinstead, G. Laufer, J. C. McDaniel, “Rotational temperature measurement in high-temperature air using KrF laser-induced O2 fluorescence,” Appl. Phys. B 57, 393–396 (1993).
[CrossRef]

G. Laufer, R. L. McKenzie, D. G. Fletcher, “Method for measuring temperature and densities in hypersonic wind tunnel flows using laser-induced O2 fluorescence,” Appl. Opt. 27, 4873–4883 (1990).
[CrossRef]

J. H. Grinstead, G. Laufer, J. C. McDaniel, “Measurements of KrF laser-induced O2 fluorescence in high-temperature atmospheric air,” in AIAA 31st Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington D.C., 1993), paper AIAA 93-0045.

J. H. Grinstead, G. Laufer, “Requirements for temperature measurements in nonequilibrium flows using laser-induced O2 fluorescence,” in Proceedings of the 14th International Conference on Instrumentation for Aerospace Simulation Facilities (Institute of Electrical and Electronics Engineers, New York, 1991), pp. 262–269.

J. H. Grinstead, T. M. Quagliaroli, G. Laufer, J. C. McDaniel, “Single-pulse temperature measurements in a turbulent flame using KrF laser-induced O2 fluorescence,” in AIAA 33rd Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington, D.C., 1995), paper AIAA 95-00423.

Lee, M. P.

Lemon, C. J.

G. A. Massey, C. J. Lemon, “Feasibility of measuring temperature and density fluctuations in air using laser-induced O2 fluorescence,” IEEE J. Quantum Electron. QE-20, 454–457 (1984).
[CrossRef]

Logan, R.

K. R. Gross, R. L. McKenzie, R. Logan, “Measurements of temperature, density, pressure, and their fluctuations in supersonic turbulence using laser-induced fluorescence,” Exp. Fluids 5, 372–380 (1987).
[CrossRef]

Lülf, H. W.

Markovitz, E. C.

Massey, G. A.

G. A. Massey, C. J. Lemon, “Feasibility of measuring temperature and density fluctuations in air using laser-induced O2 fluorescence,” IEEE J. Quantum Electron. QE-20, 454–457 (1984).
[CrossRef]

McDaniel, J. C.

J. H. Grinstead, G. Laufer, R. H. Krauss, J. C. McDaniel, “Calibration source for OH laser-induced fluorescence-density measurements with thermally dissociated H2O in atmospheric air,” Appl. Opt. 33, 1115–1119 (1994).
[CrossRef] [PubMed]

J. H. Grinstead, G. Laufer, J. C. McDaniel, “Rotational temperature measurement in high-temperature air using KrF laser-induced O2 fluorescence,” Appl. Phys. B 57, 393–396 (1993).
[CrossRef]

J. H. Grinstead, T. M. Quagliaroli, G. Laufer, J. C. McDaniel, “Single-pulse temperature measurements in a turbulent flame using KrF laser-induced O2 fluorescence,” in AIAA 33rd Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington, D.C., 1995), paper AIAA 95-00423.

J. H. Grinstead, G. Laufer, J. C. McDaniel, “Measurements of KrF laser-induced O2 fluorescence in high-temperature atmospheric air,” in AIAA 31st Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington D.C., 1993), paper AIAA 93-0045.

McKenzie, R. L.

D. G. Fletcher, R. L. McKenzie, “Single-pulse measurements of density and temperature in a turbulent, supersonic flow using UV laser spectroscopy,” Opt. Lett. 17, 1614–1616 (1992).
[CrossRef] [PubMed]

G. Laufer, R. L. McKenzie, D. G. Fletcher, “Method for measuring temperature and densities in hypersonic wind tunnel flows using laser-induced O2 fluorescence,” Appl. Opt. 27, 4873–4883 (1990).
[CrossRef]

K. R. Gross, R. L. McKenzie, R. Logan, “Measurements of temperature, density, pressure, and their fluctuations in supersonic turbulence using laser-induced fluorescence,” Exp. Fluids 5, 372–380 (1987).
[CrossRef]

McMillin, B. K.

B. K. McMillin, J. M. Seitzman, R. K. Hanson, “Comparison of NO and OH planar laser-induced fluorescence temperature measurements in scramjet model flowfields,” AIAA J. 32, 1945–1952 (1994).
[CrossRef]

B. K. McMillin, J. L. Palmer, R. K. Hanson, “Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in supersonic cross flow,” Appl. Opt. 32, 7532–7545 (1993).
[CrossRef] [PubMed]

Meijer, G.

Miles, R. B.

Mok, D. K-W.

A. S-C. Cheung, D. K-W. Mok, Y. Sun, D. E. Freeman, “The potential-energy curve for the B3∑u− state of oxygen and accurate Franck–Condon factors for the Schumann–Runge bands,” J. Mol. Spectrosc. 163, 9–18 (1994).
[CrossRef]

Nicholls, R. W.

Opperman, W.

Palmer, J. L.

Park, H.

P. C. Cosby, H. Park, R. A. Copeland, T. G. Slanger, “Predissociation linewidths in O2B ³∑u− (v=0,2),” J. Chem. Phys. 98, 5117–5133 (1993).
[CrossRef]

Parkinson, W. H.

A. S-C. Cheung, K. Yoshino, W. H. Parkinson, D. E. Freeman, “Molecular spectroscopic constants of O2(B3∑u−): the upper state of the Schumann–Runge bands,” J. Mol. Spectrosc. 119, 1–10 (1986).
[CrossRef]

K. Yoshino, D. E. Freeman, W. H. Parkinson, “Atlas of the Schumann–Runge bands of O2 in the wavelength region 175–205 nm,” J. Phys. Chem. Ref. Data 13, 207–227 (1984).
[CrossRef]

M. W. P. Cann, R. W. Nicholls, W. F. J. Evans, J. L. Kohl, R. Kurucz, W. H. Parkinson, E. M. Reeves, “High resolution atmospheric transmission calculations down to 28.7 km in the 200–243 nm spectral range,” Appl. Opt. 18, 964–977 (1979).
[CrossRef] [PubMed]

Paul, P. H.

Pitz, R. W.

J. A. Wehrmeyer, T-S. Cheng, R. W. Pitz, “Raman scattering measurements in flames using a tunable KrF excimer laser,” Appl. Opt. 31, 1495–1504 (1992).
[CrossRef] [PubMed]

R. W. Pitz, R. Cattolica, F. Robben, L. Talbot, “Temperature and density from Rayleigh scattering,” Combust. Flame 27, 313–320 (1976).
[CrossRef]

Price, L. L.

M. S. Smith, L. L. Price, W. D. Williams, “Laser-induced fluorescence diagnostics using a two-line excitation method,” AIAA J. 31, 478–482 (1993).
[CrossRef]

Quagliaroli, T. M.

J. H. Grinstead, T. M. Quagliaroli, G. Laufer, J. C. McDaniel, “Single-pulse temperature measurements in a turbulent flame using KrF laser-induced O2 fluorescence,” in AIAA 33rd Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington, D.C., 1995), paper AIAA 95-00423.

Reeves, E. M.

Robben, F.

R. W. Pitz, R. Cattolica, F. Robben, L. Talbot, “Temperature and density from Rayleigh scattering,” Combust. Flame 27, 313–320 (1976).
[CrossRef]

Roth, G. J.

Rothe, E.

Schlüter, H.

Seitzman, J. M.

J. M. Seitzman, R. K. Hanson, P. A. DeBarber, C. F. Hess, “Application of quantitative two-line OH planar laser-induced fluorescence for temporally resolved planar thermometry in reacting flows,” Appl. Opt. 33, 4000–4012 (1994).
[CrossRef] [PubMed]

B. K. McMillin, J. M. Seitzman, R. K. Hanson, “Comparison of NO and OH planar laser-induced fluorescence temperature measurements in scramjet model flowfields,” AIAA J. 32, 1945–1952 (1994).
[CrossRef]

Shibuya, K.

K. Shibuya, F. Stuhl, “Single vibronic emission from NO B2Π (v′ = 7) and O2B ³∑u− (v′ = 4) excited by 193 nm ArF laser,” J. Chem. Phys. 75, 1184–1186 (1982).
[CrossRef]

Slanger, T. G.

P. C. Cosby, H. Park, R. A. Copeland, T. G. Slanger, “Predissociation linewidths in O2B ³∑u− (v=0,2),” J. Chem. Phys. 98, 5117–5133 (1993).
[CrossRef]

R. A. Copeland, P. C. Cosby, D. R. Crosley, J. B. Jeffries, T. G. Slanger, “Vibrationally excited O2 in flames: measurements on v″ = 9–11 by laser-induced fluorescence,” J. Chem. Phys. 86, 2500–2504 (1987).
[CrossRef]

Smith, M. S.

M. S. Smith, L. L. Price, W. D. Williams, “Laser-induced fluorescence diagnostics using a two-line excitation method,” AIAA J. 31, 478–482 (1993).
[CrossRef]

Stricker, W.

W. Stricker, “Local temperature measurement in flames by laser Raman spectroscopy,” Combust. Flame 27, 133–136 (1976).
[CrossRef]

Stuhl, F.

K. Shibuya, F. Stuhl, “Single vibronic emission from NO B2Π (v′ = 7) and O2B ³∑u− (v′ = 4) excited by 193 nm ArF laser,” J. Chem. Phys. 75, 1184–1186 (1982).
[CrossRef]

Sun, Y.

A. S-C. Cheung, D. K-W. Mok, Y. Sun, D. E. Freeman, “The potential-energy curve for the B3∑u− state of oxygen and accurate Franck–Condon factors for the Schumann–Runge bands,” J. Mol. Spectrosc. 163, 9–18 (1994).
[CrossRef]

Talbot, L.

R. W. Pitz, R. Cattolica, F. Robben, L. Talbot, “Temperature and density from Rayleigh scattering,” Combust. Flame 27, 313–320 (1976).
[CrossRef]

Tatum, J. B.

J. B. Tatum, “Hönl–London factors for 3Σ±–3Σ± transitions,” Can. J. Phys. 44, 2944–2946 (1966).
[CrossRef]

ter Meulen, J. J.

Voges, H.

Wehrmeyer, J. A.

Williams, W. D.

M. S. Smith, L. L. Price, W. D. Williams, “Laser-induced fluorescence diagnostics using a two-line excitation method,” AIAA J. 31, 478–482 (1993).
[CrossRef]

Wolff, D.

Wolfrum, J.

A. Arnold, W. Ketterle, H. Becker, J. Wolfrum, “Simultaneous single-shot imaging of OH and O2 using a two-wavelength excimer laser,” Appl. Phys. B 51, 99–102 (1990).
[CrossRef]

Wysong, I. J.

Yoshino, K.

A. S-C. Cheung, K. Yoshino, W. H. Parkinson, D. E. Freeman, “Molecular spectroscopic constants of O2(B3∑u−): the upper state of the Schumann–Runge bands,” J. Mol. Spectrosc. 119, 1–10 (1986).
[CrossRef]

K. Yoshino, D. E. Freeman, W. H. Parkinson, “Atlas of the Schumann–Runge bands of O2 in the wavelength region 175–205 nm,” J. Phys. Chem. Ref. Data 13, 207–227 (1984).
[CrossRef]

AIAA J. (2)

B. K. McMillin, J. M. Seitzman, R. K. Hanson, “Comparison of NO and OH planar laser-induced fluorescence temperature measurements in scramjet model flowfields,” AIAA J. 32, 1945–1952 (1994).
[CrossRef]

M. S. Smith, L. L. Price, W. D. Williams, “Laser-induced fluorescence diagnostics using a two-line excitation method,” AIAA J. 31, 478–482 (1993).
[CrossRef]

Appl. Opt. (8)

M. W. P. Cann, R. W. Nicholls, W. F. J. Evans, J. L. Kohl, R. Kurucz, W. H. Parkinson, E. M. Reeves, “High resolution atmospheric transmission calculations down to 28.7 km in the 200–243 nm spectral range,” Appl. Opt. 18, 964–977 (1979).
[CrossRef] [PubMed]

P. Andresen, H. Schlüter, D. Wolff, H. Voges, A. Koch, W. Hentschel, W. Opperman, E. Rothe, “Identification and imaging of OH (v″ = 0) and O2 (v″ = 6 or 7) in an automobile spark-ignition engine using a tunable KrF excimer laser,” Appl. Opt. 31, 7684–7689 (1992).
[CrossRef] [PubMed]

J. A. Wehrmeyer, T-S. Cheng, R. W. Pitz, “Raman scattering measurements in flames using a tunable KrF excimer laser,” Appl. Opt. 31, 1495–1504 (1992).
[CrossRef] [PubMed]

J. H. Grinstead, G. Laufer, R. H. Krauss, J. C. McDaniel, “Calibration source for OH laser-induced fluorescence-density measurements with thermally dissociated H2O in atmospheric air,” Appl. Opt. 33, 1115–1119 (1994).
[CrossRef] [PubMed]

B. K. McMillin, J. L. Palmer, R. K. Hanson, “Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in supersonic cross flow,” Appl. Opt. 32, 7532–7545 (1993).
[CrossRef] [PubMed]

P. Andresen, A. Bath, W. Gröger, H. W. Lülf, G. Meijer, J. J. ter Meulen, “Laser-induced fluorescence with tunable excimer lasers as a possible method for instantaneous temperature field measurements at high pressures: checks with an atmospheric flame,” Appl. Opt. 27, 365–378 (1988).
[CrossRef] [PubMed]

G. Laufer, R. L. McKenzie, D. G. Fletcher, “Method for measuring temperature and densities in hypersonic wind tunnel flows using laser-induced O2 fluorescence,” Appl. Opt. 27, 4873–4883 (1990).
[CrossRef]

J. M. Seitzman, R. K. Hanson, P. A. DeBarber, C. F. Hess, “Application of quantitative two-line OH planar laser-induced fluorescence for temporally resolved planar thermometry in reacting flows,” Appl. Opt. 33, 4000–4012 (1994).
[CrossRef] [PubMed]

Appl. Phys. B (2)

A. Arnold, W. Ketterle, H. Becker, J. Wolfrum, “Simultaneous single-shot imaging of OH and O2 using a two-wavelength excimer laser,” Appl. Phys. B 51, 99–102 (1990).
[CrossRef]

J. H. Grinstead, G. Laufer, J. C. McDaniel, “Rotational temperature measurement in high-temperature air using KrF laser-induced O2 fluorescence,” Appl. Phys. B 57, 393–396 (1993).
[CrossRef]

Can. J. Phys. (1)

J. B. Tatum, “Hönl–London factors for 3Σ±–3Σ± transitions,” Can. J. Phys. 44, 2944–2946 (1966).
[CrossRef]

Combust. Flame (2)

R. W. Pitz, R. Cattolica, F. Robben, L. Talbot, “Temperature and density from Rayleigh scattering,” Combust. Flame 27, 313–320 (1976).
[CrossRef]

W. Stricker, “Local temperature measurement in flames by laser Raman spectroscopy,” Combust. Flame 27, 133–136 (1976).
[CrossRef]

Exp. Fluids (1)

K. R. Gross, R. L. McKenzie, R. Logan, “Measurements of temperature, density, pressure, and their fluctuations in supersonic turbulence using laser-induced fluorescence,” Exp. Fluids 5, 372–380 (1987).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. A. Massey, C. J. Lemon, “Feasibility of measuring temperature and density fluctuations in air using laser-induced O2 fluorescence,” IEEE J. Quantum Electron. QE-20, 454–457 (1984).
[CrossRef]

J. Chem. Phys. (3)

K. Shibuya, F. Stuhl, “Single vibronic emission from NO B2Π (v′ = 7) and O2B ³∑u− (v′ = 4) excited by 193 nm ArF laser,” J. Chem. Phys. 75, 1184–1186 (1982).
[CrossRef]

R. A. Copeland, P. C. Cosby, D. R. Crosley, J. B. Jeffries, T. G. Slanger, “Vibrationally excited O2 in flames: measurements on v″ = 9–11 by laser-induced fluorescence,” J. Chem. Phys. 86, 2500–2504 (1987).
[CrossRef]

P. C. Cosby, H. Park, R. A. Copeland, T. G. Slanger, “Predissociation linewidths in O2B ³∑u− (v=0,2),” J. Chem. Phys. 98, 5117–5133 (1993).
[CrossRef]

J. Mol. Spectrosc. (2)

A. S-C. Cheung, K. Yoshino, W. H. Parkinson, D. E. Freeman, “Molecular spectroscopic constants of O2(B3∑u−): the upper state of the Schumann–Runge bands,” J. Mol. Spectrosc. 119, 1–10 (1986).
[CrossRef]

A. S-C. Cheung, D. K-W. Mok, Y. Sun, D. E. Freeman, “The potential-energy curve for the B3∑u− state of oxygen and accurate Franck–Condon factors for the Schumann–Runge bands,” J. Mol. Spectrosc. 163, 9–18 (1994).
[CrossRef]

J. Phys. Chem. Ref. Data (2)

P. H. Krupenie, “The spectrum of molecular oxygen,” J. Phys. Chem. Ref. Data 1, 423–534 (1972).
[CrossRef]

K. Yoshino, D. E. Freeman, W. H. Parkinson, “Atlas of the Schumann–Runge bands of O2 in the wavelength region 175–205 nm,” J. Phys. Chem. Ref. Data 13, 207–227 (1984).
[CrossRef]

Opt. Lett. (5)

Other (8)

A. C. Eckbreth, “Coherent anti-Stokes Raman spectroscopy,” in Laser Diagnostics for Combustion Temperature and Species, A. K. Gupta, D. G. Lilley, eds., Vol. 7 of Energy and Engineering Science Series (Abacus, Cambridge, Mass., 1988), Chap. 6, pp. 220–300.

A. C. Eckbreth, “Laser-induced fluorescence spectroscopy (LIFS),” in Laser Diagnostics for CombustionTemperature and Species, A. K. Gupta, D. G. Lilley, eds., Vol. 7 of Energy and Engineering Science Series (Abacus, Cambridge, Mass., 1988), Chap. 7, pp. 301–349.

P. C. Cosby, SRI International, Menlo Park, Calif, 94025 (personal communication, 1990).

E. L. Dereniak, D. G. Crowe, Optical Radiation Detectors (Wiley, New York, 1984), Chap. 2, pp. 18–19.

J. H. Grinstead, T. M. Quagliaroli, G. Laufer, J. C. McDaniel, “Single-pulse temperature measurements in a turbulent flame using KrF laser-induced O2 fluorescence,” in AIAA 33rd Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington, D.C., 1995), paper AIAA 95-00423.

J. H. Grinstead, “Temperature measurement in high-temperature gases using KrF laser-induced O2 fluorescence,” Ph.D. dissertation (Department of Mechanical, Aerospace, and Nuclear Engineering, University of Virginia, Charlottesville, Va., 1995).

J. H. Grinstead, G. Laufer, “Requirements for temperature measurements in nonequilibrium flows using laser-induced O2 fluorescence,” in Proceedings of the 14th International Conference on Instrumentation for Aerospace Simulation Facilities (Institute of Electrical and Electronics Engineers, New York, 1991), pp. 262–269.

J. H. Grinstead, G. Laufer, J. C. McDaniel, “Measurements of KrF laser-induced O2 fluorescence in high-temperature atmospheric air,” in AIAA 31st Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington D.C., 1993), paper AIAA 93-0045.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Potential energy diagram of the B 3 u X 3 g Schumann– Runge band system of O2 showing the excitation paths for the KrF laser (adapted from Ref. 22).

Fig. 2
Fig. 2

Emission spectra of O2 following excitation of the (a) 0–6 R(17) and (b) 2–7 R(13) lines in atmospheric air at a temperature of 1800 K. The spectra were recorded with a spectrograph with a resolution of approximately 3 nm, and each is the average of 100 laser shots.

Fig. 3
Fig. 3

KrF excitation spectra of atmospheric air at a temperature of 1800 K: (a) Detection wavelength λ = 299 nm. O2 excitation lines in the 0–6 and the 1–6 bands and OH excitation lines in the 3–0 band of the A–X system are marked. (b) Detection wavelength λ = 257 nm. O2 excitation lines in the 2–7 band are marked. (c) Detection wavelength λ = 351 nm. O2 excitation lines in both the 0–6 and the 2–7 bands are apparent. The 0–6 P(13) and the 2–7 R(11) lines near 40252 cm−1 are the transitions excited for the two-line temperature measurement.

Fig. 4
Fig. 4

Emission spectra of O2 following simultaneous excitation of the 0–6 P(13) and the 2–7 R(11) lines at different temperatures. Each spectrum is the average of 100 laser shots and has been normalized by an integral of the Δv″ = 5 peak near 300 nm. The listed furnace temperatures are thermocouple measurements. The flame temperature was deduced from the spectrum itself following calibration.

Fig. 5
Fig. 5

Variation of the fluorescence signals with incident laser-energy flux following excitation of the 0–6 R(17) (filled circles) and 2–7 P(9) (open circles) lines in atmospheric air at a temperature of 1800 K. The fluorescence signals of both lines were normalized by their maximum measured values. The dashed line represents linear fluorescence for the 2–7 P(9) excitation.

Fig. 6
Fig. 6

Reduction of the combined spectrum following simultaneous excitation of the 0–6 P(13) and the 2–7 R(11) lines to obtain a fluorescence-signal ratio. The gray area is computed for the numerator (S2), and the black area is computed for the denominator (S1).

Fig. 7
Fig. 7

(a) Comparison between thermocouple and LIF temperature measurements in atmospheric air. The LIF temperature is the mean of 100 single-pulse measurements. The rms error of the points, referenced to the thermocouple measurements, is 1.3% over this temperature range, (b) Fractional standard deviation σT/T of the 100 single-pulse measurements versus the mean LIF temperatures of (a). (c) Fractional standard deviation σS/S of S1 versus the mean signal. The dashed line corresponds to a slope of −1/2 on this log-log plot.

Fig. 8
Fig. 8

Comparison between the fractional standard deviation σT/T of 100 single-pulse temperature measurements and the predicted uncertainty ΔT/T based on the mean fluorescence signals S1 and S2 and the mean temperature, assuming shot-noise-limited fluorescence-signal measurement.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

n pe = ( Ω 4 π η D η F ) ALN f 1 ( T ) B 12 ϕ ( ν 12 , ν L ) W f E L W D A ,
n pe ( ν L ) = ( Ω 4 π η D η F ) ALN E L A i = 1 3 W f × [ f 1 ( T ) B 12 ϕ ( ν 12 , ν L ) 1 W D ] i = ( Ω 4 π η D η F ) ALN f ( T ) β ( ν L ) W f E L A ,
R = S 2 S 1 = I ( 1 ) + I ( 2 ) + I ( 3 ) + I ( 4 ) I ( 5 ) ,
R = n pe ( b ) + n ̂ pe ( a ) n pe ( a ) = f b ( T ) β b ( ν L ) W f ( b ) + f a ( T ) β a ( ν L ) Ŵ f ( a ) f a ( T ) β a ( ν L ) W f ( a ) ,
W f ( b ) = η ( 1 ) A 2 8 + η ( 2 ) A 2 9 + η ( 3 ) A 2 10 + η ( 4 ) A 2 11 , W ̂ f ( a ) = η ( 1 ) A 0 7 + η ( 2 ) A 0 8 + η ( 3 ) A 0 9 + η ( 4 ) A 0 10 , W f ( a ) = η ( 5 ) A 0 11 .
R = C 1 exp ( Δ E / k T ) + C 2 ,
C 1 = g b β b ( ν L ) W f ( b ) g a β a ( ν L ) W f ( a ) C 2 = W ̂ f ( a ) W f ( a ) ,
Δ T T = 1 Z ( T ) Δ R R ,
Z ( T ) = T R d R d T
Δ T T = [ 1 + C 2 C 1 exp ( Δ E / k T ) ] k T Δ E Δ R R .
Δ S S = 1 S ,
Δ R R = ( 1 S 1 + 1 S 2 ) 1 / 2 .

Metrics