Abstract

One of the most efficient ways to prepare nonlinear optical polymer channel waveguides is by photobleaching. To control the index profile precisely and to design and improve the performance of active electro-optical devices, modeling of the photobleaching process is important. We report our phenomenological bleaching model, which uses a stretched exponential time dependency technique that predicts the index profile for polymer channel waveguides and present design rules for active optical switches and modulators. One way to verify the bleaching model is to calculate the effective index and compare this with our measured effective index obtained with prism-coupling techniques. The bleaching model shows good agreement with experiments.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. K. Goel, High-Speed VLSI Interconnection (Wiley, New York, 1994), Chap. 4, pp. 333–379.
  2. J. E. Midwinter, Photonics in Switching: Volume I, Back-ground and Components (Academic, New York, 1993), Chap. 9, pp. 225–270.
  3. M. B. J. Diemeer, F. M. M. Suyten, E. S. Trommel, A. McDonach, J. M. Copeland, L. M. Jenneskens, W. H. G. Horsthuis, “Photoinduced channel waveguide formation in nonlinear optical polymers,” Electron. Lett. 26, 379–380.(1990).
    [CrossRef]
  4. G. R. Möhlmann, W. H. Horsthuis, C. P. van der Vorst, “Recent developments in optically nonlinear polymers and related electro-optic devices,” in Integrated Electronics and Optoelectronics, L. McCaughin, M. A. Mentzer, S. Penyyo, H. J. Wojtunik, K. Wong, Proc. Soc. Photo-Opt. Instrum. Eng. 1177, 67–71 (1989).
  5. S. Immura, R. Yoshimura, T. Izama, “Polymer channel waveguide with low loss at 1.3 μm,” Electron. Lett. 27, 1342–1343 (1991).
    [CrossRef]
  6. J. Trewhella, J. Gelorme, B. Fan, A. Speth, D. Flagello, M. Oprysko, “Polymeric optical channel waveguides,” in Excimer Laser Materials Processing and Beam Delivery Systems, B. P. Piwczyk, ed. Proc. Soc. Photo-Opt. Instrum. Eng.1377, 64–72 (1991).
  7. T. Kurihara, S. Tomaru, Y. Mori, M. Hikita, “Third-order optical nonlinearities of a processable main chain polymer with symmetrically substituted tris-azo dyes,” Appl. Phys. Lett. 61, 1901–1903 (1992).
    [CrossRef]
  8. T. E. van Eck, A. J. Ticknor, R. S. Lytel, G. F. Lipscomb, “Complementary optical tap fabricated in an electro-optic polymer waveguide,” Appl. Phys. Lett. 58, 1588–1590 (1990).
    [CrossRef]
  9. R. S. Moshrefzadeh, D. K. Misemer, M. D. Radcliffe, C. V. Francis, S. K. Mohapatra, “Nonuniform photobleaching of dyed polymers for optical waveguides,” Appl. Phys. Lett. 62, 16–18 (1993).
    [CrossRef]
  10. E. L. Simmons, “The photochemistry of solid layers: reaction rates,” J. Phys. Chem. 75, 588–590 (1971).
    [CrossRef]
  11. N. Capolla, R. A. Lessard, “Real time bleaching of methylene blue or thionine sensitized gelatin,” Appl. Opt. 30, 1196–1200 (1991).
    [CrossRef] [PubMed]
  12. I. P. Kaminow, L. W. Stulz, E. A. Chandross, C. A. Pryde, “Photobleaching of organic laser dyes in solid matrices,” Appl. Opt. 11, 1563–1567 (1972).
    [CrossRef] [PubMed]
  13. D. C. Hutchings, M. Sheik-bahae, D. J. Hagan, E. W. van Stryland, “Kramers–Krönig relation in nonlinear optics,” Opt. Quantum Electron. 24, 1–30 (1992).
    [CrossRef]
  14. S. Lin, W. Feng, R. B. Hooker, A. R. Mickelson, “Design fabrication and evaluation of UV bleached polymeric directional couplers,” Guided Wave Optics Laboratory Report 56 (University of Colorado at Boulder, Boulder, Colo., 1994).
  15. J. R. Sheats, J. J. Diamond, J. M. Smith, “Photochemistry in strongly absorbing media,” J. Phys. Chem. 92, 4922–2938 (1988).
    [CrossRef]
  16. J. I. Thackara, IBM Almaden Research Center, 650 Harry Road, San Jose, Calif. 95120 (personal communication, 1993).
  17. J. R. Sheats, “Oxidative photobleaching of substituted anthracenes in thin polymer films,” J. Phys. Chem. 94, 7194–7200 (1990).
    [CrossRef]
  18. R. Richert, H. Bässler, “Merocynine ↔ spiropyran transformation in a polymer matrix: an example of a dispersive chemical reaction,” Chem. Phys. Lett. 116, 302–306 (1985).
    [CrossRef]
  19. R. Richert, “Analysis of non-exponential first-order reactions,” Chem. Phys. Lett. 118, 534–538 (1985).
    [CrossRef]
  20. T. Tsutsui, A. Hatakeyama, S. Saito, “Analysis of thermal reactions of photochromic species in glassy matrices based on the concept of dispersive processes,” Chem. Phys. Lett. 132, 563–566 (1986).
    [CrossRef]
  21. A. Skumanich, M. Jurich, J. D. Swalen, “Absorption and scattering in nonlinear optical polymeric systems,” Appl. Phys. Lett. 62, 446–448 (1993).
    [CrossRef]
  22. W. Feng, S. Lin, R. B. Hooker, A. R. Mickelson, “Study of UV bleached channel waveguide performance in NLO polymer films,” Appl. Opt. (to be published).
  23. J. M. White, P. F. Heidrich, “Optical waveguide refractive index profiles determined from measurement of mode indices: a simple analysis,” Appl. Opt. 15, 151–155 (1976).
    [CrossRef] [PubMed]
  24. P. K. Tien, R. Ulrich, R. J. Martin, “Modes of propagating light waves in thin deposited semiconductor films,” Appl. Phys. Lett. 14, 291–294 (1969).
    [CrossRef]
  25. P. K. Tien, R. Ulrich, “Theory of prism–film coupler and thin-film light guides,” J. Opt. Soc. Am. 60, 1325–1337 (1970).
    [CrossRef]
  26. W. Charczenko, “Coupled mode analysis, fabrication, and characterization of microwave integrated optical devices,” Ph.D. dissertation (University of Colorado at Boulder, Boulder, Colo., 1990).
  27. M. R. Surette, A. R. Mickelson, “Slab and channel waveguide software user's manual,” Guided Wave Optics Laboratory Report 20 (University of Colorado at Boulder, Boulder, Colo., 1990).

1993 (2)

R. S. Moshrefzadeh, D. K. Misemer, M. D. Radcliffe, C. V. Francis, S. K. Mohapatra, “Nonuniform photobleaching of dyed polymers for optical waveguides,” Appl. Phys. Lett. 62, 16–18 (1993).
[CrossRef]

A. Skumanich, M. Jurich, J. D. Swalen, “Absorption and scattering in nonlinear optical polymeric systems,” Appl. Phys. Lett. 62, 446–448 (1993).
[CrossRef]

1992 (2)

D. C. Hutchings, M. Sheik-bahae, D. J. Hagan, E. W. van Stryland, “Kramers–Krönig relation in nonlinear optics,” Opt. Quantum Electron. 24, 1–30 (1992).
[CrossRef]

T. Kurihara, S. Tomaru, Y. Mori, M. Hikita, “Third-order optical nonlinearities of a processable main chain polymer with symmetrically substituted tris-azo dyes,” Appl. Phys. Lett. 61, 1901–1903 (1992).
[CrossRef]

1991 (2)

N. Capolla, R. A. Lessard, “Real time bleaching of methylene blue or thionine sensitized gelatin,” Appl. Opt. 30, 1196–1200 (1991).
[CrossRef] [PubMed]

S. Immura, R. Yoshimura, T. Izama, “Polymer channel waveguide with low loss at 1.3 μm,” Electron. Lett. 27, 1342–1343 (1991).
[CrossRef]

1990 (3)

J. R. Sheats, “Oxidative photobleaching of substituted anthracenes in thin polymer films,” J. Phys. Chem. 94, 7194–7200 (1990).
[CrossRef]

T. E. van Eck, A. J. Ticknor, R. S. Lytel, G. F. Lipscomb, “Complementary optical tap fabricated in an electro-optic polymer waveguide,” Appl. Phys. Lett. 58, 1588–1590 (1990).
[CrossRef]

M. B. J. Diemeer, F. M. M. Suyten, E. S. Trommel, A. McDonach, J. M. Copeland, L. M. Jenneskens, W. H. G. Horsthuis, “Photoinduced channel waveguide formation in nonlinear optical polymers,” Electron. Lett. 26, 379–380.(1990).
[CrossRef]

1989 (1)

G. R. Möhlmann, W. H. Horsthuis, C. P. van der Vorst, “Recent developments in optically nonlinear polymers and related electro-optic devices,” in Integrated Electronics and Optoelectronics, L. McCaughin, M. A. Mentzer, S. Penyyo, H. J. Wojtunik, K. Wong, Proc. Soc. Photo-Opt. Instrum. Eng. 1177, 67–71 (1989).

G. R. Möhlmann, W. H. Horsthuis, C. P. van der Vorst, “Recent developments in optically nonlinear polymers and related electro-optic devices,” in Integrated Electronics and Optoelectronics, L. McCaughin, M. A. Mentzer, S. Penyyo, H. J. Wojtunik, K. Wong, Proc. Soc. Photo-Opt. Instrum. Eng. 1177, 67–71 (1989).

1988 (1)

J. R. Sheats, J. J. Diamond, J. M. Smith, “Photochemistry in strongly absorbing media,” J. Phys. Chem. 92, 4922–2938 (1988).
[CrossRef]

1986 (1)

T. Tsutsui, A. Hatakeyama, S. Saito, “Analysis of thermal reactions of photochromic species in glassy matrices based on the concept of dispersive processes,” Chem. Phys. Lett. 132, 563–566 (1986).
[CrossRef]

1985 (2)

R. Richert, H. Bässler, “Merocynine ↔ spiropyran transformation in a polymer matrix: an example of a dispersive chemical reaction,” Chem. Phys. Lett. 116, 302–306 (1985).
[CrossRef]

R. Richert, “Analysis of non-exponential first-order reactions,” Chem. Phys. Lett. 118, 534–538 (1985).
[CrossRef]

1976 (1)

1972 (1)

1971 (1)

E. L. Simmons, “The photochemistry of solid layers: reaction rates,” J. Phys. Chem. 75, 588–590 (1971).
[CrossRef]

1970 (1)

1969 (1)

P. K. Tien, R. Ulrich, R. J. Martin, “Modes of propagating light waves in thin deposited semiconductor films,” Appl. Phys. Lett. 14, 291–294 (1969).
[CrossRef]

Bässler, H.

R. Richert, H. Bässler, “Merocynine ↔ spiropyran transformation in a polymer matrix: an example of a dispersive chemical reaction,” Chem. Phys. Lett. 116, 302–306 (1985).
[CrossRef]

Capolla, N.

Chandross, E. A.

Charczenko, W.

W. Charczenko, “Coupled mode analysis, fabrication, and characterization of microwave integrated optical devices,” Ph.D. dissertation (University of Colorado at Boulder, Boulder, Colo., 1990).

Copeland, J. M.

M. B. J. Diemeer, F. M. M. Suyten, E. S. Trommel, A. McDonach, J. M. Copeland, L. M. Jenneskens, W. H. G. Horsthuis, “Photoinduced channel waveguide formation in nonlinear optical polymers,” Electron. Lett. 26, 379–380.(1990).
[CrossRef]

Diamond, J. J.

J. R. Sheats, J. J. Diamond, J. M. Smith, “Photochemistry in strongly absorbing media,” J. Phys. Chem. 92, 4922–2938 (1988).
[CrossRef]

Diemeer, M. B. J.

M. B. J. Diemeer, F. M. M. Suyten, E. S. Trommel, A. McDonach, J. M. Copeland, L. M. Jenneskens, W. H. G. Horsthuis, “Photoinduced channel waveguide formation in nonlinear optical polymers,” Electron. Lett. 26, 379–380.(1990).
[CrossRef]

Fan, B.

J. Trewhella, J. Gelorme, B. Fan, A. Speth, D. Flagello, M. Oprysko, “Polymeric optical channel waveguides,” in Excimer Laser Materials Processing and Beam Delivery Systems, B. P. Piwczyk, ed. Proc. Soc. Photo-Opt. Instrum. Eng.1377, 64–72 (1991).

Feng, W.

S. Lin, W. Feng, R. B. Hooker, A. R. Mickelson, “Design fabrication and evaluation of UV bleached polymeric directional couplers,” Guided Wave Optics Laboratory Report 56 (University of Colorado at Boulder, Boulder, Colo., 1994).

W. Feng, S. Lin, R. B. Hooker, A. R. Mickelson, “Study of UV bleached channel waveguide performance in NLO polymer films,” Appl. Opt. (to be published).

Flagello, D.

J. Trewhella, J. Gelorme, B. Fan, A. Speth, D. Flagello, M. Oprysko, “Polymeric optical channel waveguides,” in Excimer Laser Materials Processing and Beam Delivery Systems, B. P. Piwczyk, ed. Proc. Soc. Photo-Opt. Instrum. Eng.1377, 64–72 (1991).

Francis, C. V.

R. S. Moshrefzadeh, D. K. Misemer, M. D. Radcliffe, C. V. Francis, S. K. Mohapatra, “Nonuniform photobleaching of dyed polymers for optical waveguides,” Appl. Phys. Lett. 62, 16–18 (1993).
[CrossRef]

Gelorme, J.

J. Trewhella, J. Gelorme, B. Fan, A. Speth, D. Flagello, M. Oprysko, “Polymeric optical channel waveguides,” in Excimer Laser Materials Processing and Beam Delivery Systems, B. P. Piwczyk, ed. Proc. Soc. Photo-Opt. Instrum. Eng.1377, 64–72 (1991).

Goel, A. K.

A. K. Goel, High-Speed VLSI Interconnection (Wiley, New York, 1994), Chap. 4, pp. 333–379.

Hagan, D. J.

D. C. Hutchings, M. Sheik-bahae, D. J. Hagan, E. W. van Stryland, “Kramers–Krönig relation in nonlinear optics,” Opt. Quantum Electron. 24, 1–30 (1992).
[CrossRef]

Hatakeyama, A.

T. Tsutsui, A. Hatakeyama, S. Saito, “Analysis of thermal reactions of photochromic species in glassy matrices based on the concept of dispersive processes,” Chem. Phys. Lett. 132, 563–566 (1986).
[CrossRef]

Heidrich, P. F.

Hikita, M.

T. Kurihara, S. Tomaru, Y. Mori, M. Hikita, “Third-order optical nonlinearities of a processable main chain polymer with symmetrically substituted tris-azo dyes,” Appl. Phys. Lett. 61, 1901–1903 (1992).
[CrossRef]

Hooker, R. B.

S. Lin, W. Feng, R. B. Hooker, A. R. Mickelson, “Design fabrication and evaluation of UV bleached polymeric directional couplers,” Guided Wave Optics Laboratory Report 56 (University of Colorado at Boulder, Boulder, Colo., 1994).

W. Feng, S. Lin, R. B. Hooker, A. R. Mickelson, “Study of UV bleached channel waveguide performance in NLO polymer films,” Appl. Opt. (to be published).

Horsthuis, W. H.

G. R. Möhlmann, W. H. Horsthuis, C. P. van der Vorst, “Recent developments in optically nonlinear polymers and related electro-optic devices,” in Integrated Electronics and Optoelectronics, L. McCaughin, M. A. Mentzer, S. Penyyo, H. J. Wojtunik, K. Wong, Proc. Soc. Photo-Opt. Instrum. Eng. 1177, 67–71 (1989).

Horsthuis, W. H. G.

M. B. J. Diemeer, F. M. M. Suyten, E. S. Trommel, A. McDonach, J. M. Copeland, L. M. Jenneskens, W. H. G. Horsthuis, “Photoinduced channel waveguide formation in nonlinear optical polymers,” Electron. Lett. 26, 379–380.(1990).
[CrossRef]

Hutchings, D. C.

D. C. Hutchings, M. Sheik-bahae, D. J. Hagan, E. W. van Stryland, “Kramers–Krönig relation in nonlinear optics,” Opt. Quantum Electron. 24, 1–30 (1992).
[CrossRef]

Immura, S.

S. Immura, R. Yoshimura, T. Izama, “Polymer channel waveguide with low loss at 1.3 μm,” Electron. Lett. 27, 1342–1343 (1991).
[CrossRef]

Izama, T.

S. Immura, R. Yoshimura, T. Izama, “Polymer channel waveguide with low loss at 1.3 μm,” Electron. Lett. 27, 1342–1343 (1991).
[CrossRef]

Jenneskens, L. M.

M. B. J. Diemeer, F. M. M. Suyten, E. S. Trommel, A. McDonach, J. M. Copeland, L. M. Jenneskens, W. H. G. Horsthuis, “Photoinduced channel waveguide formation in nonlinear optical polymers,” Electron. Lett. 26, 379–380.(1990).
[CrossRef]

Jurich, M.

A. Skumanich, M. Jurich, J. D. Swalen, “Absorption and scattering in nonlinear optical polymeric systems,” Appl. Phys. Lett. 62, 446–448 (1993).
[CrossRef]

Kaminow, I. P.

Kurihara, T.

T. Kurihara, S. Tomaru, Y. Mori, M. Hikita, “Third-order optical nonlinearities of a processable main chain polymer with symmetrically substituted tris-azo dyes,” Appl. Phys. Lett. 61, 1901–1903 (1992).
[CrossRef]

Lessard, R. A.

Lin, S.

S. Lin, W. Feng, R. B. Hooker, A. R. Mickelson, “Design fabrication and evaluation of UV bleached polymeric directional couplers,” Guided Wave Optics Laboratory Report 56 (University of Colorado at Boulder, Boulder, Colo., 1994).

W. Feng, S. Lin, R. B. Hooker, A. R. Mickelson, “Study of UV bleached channel waveguide performance in NLO polymer films,” Appl. Opt. (to be published).

Lipscomb, G. F.

T. E. van Eck, A. J. Ticknor, R. S. Lytel, G. F. Lipscomb, “Complementary optical tap fabricated in an electro-optic polymer waveguide,” Appl. Phys. Lett. 58, 1588–1590 (1990).
[CrossRef]

Lytel, R. S.

T. E. van Eck, A. J. Ticknor, R. S. Lytel, G. F. Lipscomb, “Complementary optical tap fabricated in an electro-optic polymer waveguide,” Appl. Phys. Lett. 58, 1588–1590 (1990).
[CrossRef]

Martin, R. J.

P. K. Tien, R. Ulrich, R. J. Martin, “Modes of propagating light waves in thin deposited semiconductor films,” Appl. Phys. Lett. 14, 291–294 (1969).
[CrossRef]

McCaughin, L.

G. R. Möhlmann, W. H. Horsthuis, C. P. van der Vorst, “Recent developments in optically nonlinear polymers and related electro-optic devices,” in Integrated Electronics and Optoelectronics, L. McCaughin, M. A. Mentzer, S. Penyyo, H. J. Wojtunik, K. Wong, Proc. Soc. Photo-Opt. Instrum. Eng. 1177, 67–71 (1989).

McDonach, A.

M. B. J. Diemeer, F. M. M. Suyten, E. S. Trommel, A. McDonach, J. M. Copeland, L. M. Jenneskens, W. H. G. Horsthuis, “Photoinduced channel waveguide formation in nonlinear optical polymers,” Electron. Lett. 26, 379–380.(1990).
[CrossRef]

Mentzer, M. A.

G. R. Möhlmann, W. H. Horsthuis, C. P. van der Vorst, “Recent developments in optically nonlinear polymers and related electro-optic devices,” in Integrated Electronics and Optoelectronics, L. McCaughin, M. A. Mentzer, S. Penyyo, H. J. Wojtunik, K. Wong, Proc. Soc. Photo-Opt. Instrum. Eng. 1177, 67–71 (1989).

Mickelson, A. R.

S. Lin, W. Feng, R. B. Hooker, A. R. Mickelson, “Design fabrication and evaluation of UV bleached polymeric directional couplers,” Guided Wave Optics Laboratory Report 56 (University of Colorado at Boulder, Boulder, Colo., 1994).

W. Feng, S. Lin, R. B. Hooker, A. R. Mickelson, “Study of UV bleached channel waveguide performance in NLO polymer films,” Appl. Opt. (to be published).

M. R. Surette, A. R. Mickelson, “Slab and channel waveguide software user's manual,” Guided Wave Optics Laboratory Report 20 (University of Colorado at Boulder, Boulder, Colo., 1990).

Midwinter, J. E.

J. E. Midwinter, Photonics in Switching: Volume I, Back-ground and Components (Academic, New York, 1993), Chap. 9, pp. 225–270.

Misemer, D. K.

R. S. Moshrefzadeh, D. K. Misemer, M. D. Radcliffe, C. V. Francis, S. K. Mohapatra, “Nonuniform photobleaching of dyed polymers for optical waveguides,” Appl. Phys. Lett. 62, 16–18 (1993).
[CrossRef]

Mohapatra, S. K.

R. S. Moshrefzadeh, D. K. Misemer, M. D. Radcliffe, C. V. Francis, S. K. Mohapatra, “Nonuniform photobleaching of dyed polymers for optical waveguides,” Appl. Phys. Lett. 62, 16–18 (1993).
[CrossRef]

Möhlmann, G. R.

G. R. Möhlmann, W. H. Horsthuis, C. P. van der Vorst, “Recent developments in optically nonlinear polymers and related electro-optic devices,” in Integrated Electronics and Optoelectronics, L. McCaughin, M. A. Mentzer, S. Penyyo, H. J. Wojtunik, K. Wong, Proc. Soc. Photo-Opt. Instrum. Eng. 1177, 67–71 (1989).

Mori, Y.

T. Kurihara, S. Tomaru, Y. Mori, M. Hikita, “Third-order optical nonlinearities of a processable main chain polymer with symmetrically substituted tris-azo dyes,” Appl. Phys. Lett. 61, 1901–1903 (1992).
[CrossRef]

Moshrefzadeh, R. S.

R. S. Moshrefzadeh, D. K. Misemer, M. D. Radcliffe, C. V. Francis, S. K. Mohapatra, “Nonuniform photobleaching of dyed polymers for optical waveguides,” Appl. Phys. Lett. 62, 16–18 (1993).
[CrossRef]

Oprysko, M.

J. Trewhella, J. Gelorme, B. Fan, A. Speth, D. Flagello, M. Oprysko, “Polymeric optical channel waveguides,” in Excimer Laser Materials Processing and Beam Delivery Systems, B. P. Piwczyk, ed. Proc. Soc. Photo-Opt. Instrum. Eng.1377, 64–72 (1991).

Penyyo, S.

G. R. Möhlmann, W. H. Horsthuis, C. P. van der Vorst, “Recent developments in optically nonlinear polymers and related electro-optic devices,” in Integrated Electronics and Optoelectronics, L. McCaughin, M. A. Mentzer, S. Penyyo, H. J. Wojtunik, K. Wong, Proc. Soc. Photo-Opt. Instrum. Eng. 1177, 67–71 (1989).

Pryde, C. A.

Radcliffe, M. D.

R. S. Moshrefzadeh, D. K. Misemer, M. D. Radcliffe, C. V. Francis, S. K. Mohapatra, “Nonuniform photobleaching of dyed polymers for optical waveguides,” Appl. Phys. Lett. 62, 16–18 (1993).
[CrossRef]

Richert, R.

R. Richert, H. Bässler, “Merocynine ↔ spiropyran transformation in a polymer matrix: an example of a dispersive chemical reaction,” Chem. Phys. Lett. 116, 302–306 (1985).
[CrossRef]

R. Richert, “Analysis of non-exponential first-order reactions,” Chem. Phys. Lett. 118, 534–538 (1985).
[CrossRef]

Saito, S.

T. Tsutsui, A. Hatakeyama, S. Saito, “Analysis of thermal reactions of photochromic species in glassy matrices based on the concept of dispersive processes,” Chem. Phys. Lett. 132, 563–566 (1986).
[CrossRef]

Sheats, J. R.

J. R. Sheats, “Oxidative photobleaching of substituted anthracenes in thin polymer films,” J. Phys. Chem. 94, 7194–7200 (1990).
[CrossRef]

J. R. Sheats, J. J. Diamond, J. M. Smith, “Photochemistry in strongly absorbing media,” J. Phys. Chem. 92, 4922–2938 (1988).
[CrossRef]

Sheik-bahae, M.

D. C. Hutchings, M. Sheik-bahae, D. J. Hagan, E. W. van Stryland, “Kramers–Krönig relation in nonlinear optics,” Opt. Quantum Electron. 24, 1–30 (1992).
[CrossRef]

Simmons, E. L.

E. L. Simmons, “The photochemistry of solid layers: reaction rates,” J. Phys. Chem. 75, 588–590 (1971).
[CrossRef]

Skumanich, A.

A. Skumanich, M. Jurich, J. D. Swalen, “Absorption and scattering in nonlinear optical polymeric systems,” Appl. Phys. Lett. 62, 446–448 (1993).
[CrossRef]

Smith, J. M.

J. R. Sheats, J. J. Diamond, J. M. Smith, “Photochemistry in strongly absorbing media,” J. Phys. Chem. 92, 4922–2938 (1988).
[CrossRef]

Speth, A.

J. Trewhella, J. Gelorme, B. Fan, A. Speth, D. Flagello, M. Oprysko, “Polymeric optical channel waveguides,” in Excimer Laser Materials Processing and Beam Delivery Systems, B. P. Piwczyk, ed. Proc. Soc. Photo-Opt. Instrum. Eng.1377, 64–72 (1991).

Stulz, L. W.

Surette, M. R.

M. R. Surette, A. R. Mickelson, “Slab and channel waveguide software user's manual,” Guided Wave Optics Laboratory Report 20 (University of Colorado at Boulder, Boulder, Colo., 1990).

Suyten, F. M. M.

M. B. J. Diemeer, F. M. M. Suyten, E. S. Trommel, A. McDonach, J. M. Copeland, L. M. Jenneskens, W. H. G. Horsthuis, “Photoinduced channel waveguide formation in nonlinear optical polymers,” Electron. Lett. 26, 379–380.(1990).
[CrossRef]

Swalen, J. D.

A. Skumanich, M. Jurich, J. D. Swalen, “Absorption and scattering in nonlinear optical polymeric systems,” Appl. Phys. Lett. 62, 446–448 (1993).
[CrossRef]

Thackara, J. I.

J. I. Thackara, IBM Almaden Research Center, 650 Harry Road, San Jose, Calif. 95120 (personal communication, 1993).

Ticknor, A. J.

T. E. van Eck, A. J. Ticknor, R. S. Lytel, G. F. Lipscomb, “Complementary optical tap fabricated in an electro-optic polymer waveguide,” Appl. Phys. Lett. 58, 1588–1590 (1990).
[CrossRef]

Tien, P. K.

P. K. Tien, R. Ulrich, “Theory of prism–film coupler and thin-film light guides,” J. Opt. Soc. Am. 60, 1325–1337 (1970).
[CrossRef]

P. K. Tien, R. Ulrich, R. J. Martin, “Modes of propagating light waves in thin deposited semiconductor films,” Appl. Phys. Lett. 14, 291–294 (1969).
[CrossRef]

Tomaru, S.

T. Kurihara, S. Tomaru, Y. Mori, M. Hikita, “Third-order optical nonlinearities of a processable main chain polymer with symmetrically substituted tris-azo dyes,” Appl. Phys. Lett. 61, 1901–1903 (1992).
[CrossRef]

Trewhella, J.

J. Trewhella, J. Gelorme, B. Fan, A. Speth, D. Flagello, M. Oprysko, “Polymeric optical channel waveguides,” in Excimer Laser Materials Processing and Beam Delivery Systems, B. P. Piwczyk, ed. Proc. Soc. Photo-Opt. Instrum. Eng.1377, 64–72 (1991).

Trommel, E. S.

M. B. J. Diemeer, F. M. M. Suyten, E. S. Trommel, A. McDonach, J. M. Copeland, L. M. Jenneskens, W. H. G. Horsthuis, “Photoinduced channel waveguide formation in nonlinear optical polymers,” Electron. Lett. 26, 379–380.(1990).
[CrossRef]

Tsutsui, T.

T. Tsutsui, A. Hatakeyama, S. Saito, “Analysis of thermal reactions of photochromic species in glassy matrices based on the concept of dispersive processes,” Chem. Phys. Lett. 132, 563–566 (1986).
[CrossRef]

Ulrich, R.

P. K. Tien, R. Ulrich, “Theory of prism–film coupler and thin-film light guides,” J. Opt. Soc. Am. 60, 1325–1337 (1970).
[CrossRef]

P. K. Tien, R. Ulrich, R. J. Martin, “Modes of propagating light waves in thin deposited semiconductor films,” Appl. Phys. Lett. 14, 291–294 (1969).
[CrossRef]

van der Vorst, C. P.

G. R. Möhlmann, W. H. Horsthuis, C. P. van der Vorst, “Recent developments in optically nonlinear polymers and related electro-optic devices,” in Integrated Electronics and Optoelectronics, L. McCaughin, M. A. Mentzer, S. Penyyo, H. J. Wojtunik, K. Wong, Proc. Soc. Photo-Opt. Instrum. Eng. 1177, 67–71 (1989).

van Eck, T. E.

T. E. van Eck, A. J. Ticknor, R. S. Lytel, G. F. Lipscomb, “Complementary optical tap fabricated in an electro-optic polymer waveguide,” Appl. Phys. Lett. 58, 1588–1590 (1990).
[CrossRef]

van Stryland, E. W.

D. C. Hutchings, M. Sheik-bahae, D. J. Hagan, E. W. van Stryland, “Kramers–Krönig relation in nonlinear optics,” Opt. Quantum Electron. 24, 1–30 (1992).
[CrossRef]

White, J. M.

Wojtunik, H. J.

G. R. Möhlmann, W. H. Horsthuis, C. P. van der Vorst, “Recent developments in optically nonlinear polymers and related electro-optic devices,” in Integrated Electronics and Optoelectronics, L. McCaughin, M. A. Mentzer, S. Penyyo, H. J. Wojtunik, K. Wong, Proc. Soc. Photo-Opt. Instrum. Eng. 1177, 67–71 (1989).

Wong, K.

G. R. Möhlmann, W. H. Horsthuis, C. P. van der Vorst, “Recent developments in optically nonlinear polymers and related electro-optic devices,” in Integrated Electronics and Optoelectronics, L. McCaughin, M. A. Mentzer, S. Penyyo, H. J. Wojtunik, K. Wong, Proc. Soc. Photo-Opt. Instrum. Eng. 1177, 67–71 (1989).

Yoshimura, R.

S. Immura, R. Yoshimura, T. Izama, “Polymer channel waveguide with low loss at 1.3 μm,” Electron. Lett. 27, 1342–1343 (1991).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (5)

P. K. Tien, R. Ulrich, R. J. Martin, “Modes of propagating light waves in thin deposited semiconductor films,” Appl. Phys. Lett. 14, 291–294 (1969).
[CrossRef]

A. Skumanich, M. Jurich, J. D. Swalen, “Absorption and scattering in nonlinear optical polymeric systems,” Appl. Phys. Lett. 62, 446–448 (1993).
[CrossRef]

T. Kurihara, S. Tomaru, Y. Mori, M. Hikita, “Third-order optical nonlinearities of a processable main chain polymer with symmetrically substituted tris-azo dyes,” Appl. Phys. Lett. 61, 1901–1903 (1992).
[CrossRef]

T. E. van Eck, A. J. Ticknor, R. S. Lytel, G. F. Lipscomb, “Complementary optical tap fabricated in an electro-optic polymer waveguide,” Appl. Phys. Lett. 58, 1588–1590 (1990).
[CrossRef]

R. S. Moshrefzadeh, D. K. Misemer, M. D. Radcliffe, C. V. Francis, S. K. Mohapatra, “Nonuniform photobleaching of dyed polymers for optical waveguides,” Appl. Phys. Lett. 62, 16–18 (1993).
[CrossRef]

Chem. Phys. Lett. (3)

R. Richert, H. Bässler, “Merocynine ↔ spiropyran transformation in a polymer matrix: an example of a dispersive chemical reaction,” Chem. Phys. Lett. 116, 302–306 (1985).
[CrossRef]

R. Richert, “Analysis of non-exponential first-order reactions,” Chem. Phys. Lett. 118, 534–538 (1985).
[CrossRef]

T. Tsutsui, A. Hatakeyama, S. Saito, “Analysis of thermal reactions of photochromic species in glassy matrices based on the concept of dispersive processes,” Chem. Phys. Lett. 132, 563–566 (1986).
[CrossRef]

Electron. Lett. (2)

M. B. J. Diemeer, F. M. M. Suyten, E. S. Trommel, A. McDonach, J. M. Copeland, L. M. Jenneskens, W. H. G. Horsthuis, “Photoinduced channel waveguide formation in nonlinear optical polymers,” Electron. Lett. 26, 379–380.(1990).
[CrossRef]

S. Immura, R. Yoshimura, T. Izama, “Polymer channel waveguide with low loss at 1.3 μm,” Electron. Lett. 27, 1342–1343 (1991).
[CrossRef]

Integrated Electronics and Optoelectronics (1)

G. R. Möhlmann, W. H. Horsthuis, C. P. van der Vorst, “Recent developments in optically nonlinear polymers and related electro-optic devices,” in Integrated Electronics and Optoelectronics, L. McCaughin, M. A. Mentzer, S. Penyyo, H. J. Wojtunik, K. Wong, Proc. Soc. Photo-Opt. Instrum. Eng. 1177, 67–71 (1989).

J. Opt. Soc. Am. (1)

J. Phys. Chem. (3)

J. R. Sheats, “Oxidative photobleaching of substituted anthracenes in thin polymer films,” J. Phys. Chem. 94, 7194–7200 (1990).
[CrossRef]

E. L. Simmons, “The photochemistry of solid layers: reaction rates,” J. Phys. Chem. 75, 588–590 (1971).
[CrossRef]

J. R. Sheats, J. J. Diamond, J. M. Smith, “Photochemistry in strongly absorbing media,” J. Phys. Chem. 92, 4922–2938 (1988).
[CrossRef]

Opt. Quantum Electron. (1)

D. C. Hutchings, M. Sheik-bahae, D. J. Hagan, E. W. van Stryland, “Kramers–Krönig relation in nonlinear optics,” Opt. Quantum Electron. 24, 1–30 (1992).
[CrossRef]

Other (8)

S. Lin, W. Feng, R. B. Hooker, A. R. Mickelson, “Design fabrication and evaluation of UV bleached polymeric directional couplers,” Guided Wave Optics Laboratory Report 56 (University of Colorado at Boulder, Boulder, Colo., 1994).

J. I. Thackara, IBM Almaden Research Center, 650 Harry Road, San Jose, Calif. 95120 (personal communication, 1993).

J. Trewhella, J. Gelorme, B. Fan, A. Speth, D. Flagello, M. Oprysko, “Polymeric optical channel waveguides,” in Excimer Laser Materials Processing and Beam Delivery Systems, B. P. Piwczyk, ed. Proc. Soc. Photo-Opt. Instrum. Eng.1377, 64–72 (1991).

A. K. Goel, High-Speed VLSI Interconnection (Wiley, New York, 1994), Chap. 4, pp. 333–379.

J. E. Midwinter, Photonics in Switching: Volume I, Back-ground and Components (Academic, New York, 1993), Chap. 9, pp. 225–270.

W. Charczenko, “Coupled mode analysis, fabrication, and characterization of microwave integrated optical devices,” Ph.D. dissertation (University of Colorado at Boulder, Boulder, Colo., 1990).

M. R. Surette, A. R. Mickelson, “Slab and channel waveguide software user's manual,” Guided Wave Optics Laboratory Report 20 (University of Colorado at Boulder, Boulder, Colo., 1990).

W. Feng, S. Lin, R. B. Hooker, A. R. Mickelson, “Study of UV bleached channel waveguide performance in NLO polymer films,” Appl. Opt. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Molecular formulas of PMMA/DR1 and Ultem with DEDR1.

Fig. 2
Fig. 2

Absorption spectra for PMMA/DR1 with 10% chromophore concentration. The 2.4-μm-thick samples were spin coated on fused-quartz substrates and bleached at 110 °C with 70 mW/cm2 intensity.

Fig. 3
Fig. 3

Absorption spectra for Ultem/DEDR1. The 1.8-μm-thick samples were spin coated on glass substrates and bleached at 140 °C with 70 mW/cm2 intensity.

Fig. 4
Fig. 4

Absorbance at peak wavelength versus bleaching time (a) for PMMA/DR1 and (b) Ultem/DEDR1, showing nonexponential decay as a result of photobleaching. The solid curves show the theoretical A0, t) after κ0 and m are fitted to the measured absorption peaks.

Fig. 5
Fig. 5

(a) Relationship between κ and wavelength for PMMA/ DR1. The 2.4-μm-thick sample was bleached at 110 °C. (b) Relationship between κ and wavelength for Ultem/DEDR1. The 1.8-μm-thick sample was bleached at 140 °C.

Fig. 6
Fig. 6

Modeled index profile of PMMA/DR1 at λ = 0.83 μm for different bleaching times.

Fig. 7
Fig. 7

Modeled index profile of PMMA/DR1 at λ = 1.3 μm for different bleaching times.

Fig. 8
Fig. 8

Modeled index profile for Ultem/DEDR1 at λ = 0.83 μm for different bleaching times.

Fig. 9
Fig. 9

Modeled index profile for Ultem/DEDR1 at λ = 1.3 μm for different bleaching times.

Fig. 10
Fig. 10

Comparison between the measured and the calculated absorption spectra for (a) PMMA/DR1 with 48-hr bleaching time and (b) Ultem/DEDR1 with 7-hr bleaching time.

Fig. 11
Fig. 11

Comparison between the measured and the calculated effective indices of the TE0 mode for the PMMA/DR1 slab at (a) λ = 0.83 μm and (b) λ = 1.3 μm versus bleaching time.

Fig. 12
Fig. 12

Comparison between the measured and the calculated effective indices of the TE0 mode for (a) the Ultem/DEDR1 slab at (a) λ = 0.83 μm and (b) λ = 1.3 μm versus bleaching time.

Fig. 13
Fig. 13

(a) Comparison between the measured and the calculated horizontal TE0 mode profiles of the PMMA/DR1 channel waveguide.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

I ( λ B , z , t ) z = i = 1 n α i ( λ B , z , t ) I ( λ B , z , t ) ,
α i ( λ , z , t ) t = κ i ( λ , λ B , T , t , F ) α i ( λ B , z , t ) × I ( λ B , z , t ) d λ B ,
α i ( λ , z , t ) t = κ i ( λ , λ B , T , t , F ) α i ( λ B , z , t ) I ( λ B , z , t ) .
κ ( λ , λ B , T , t , F ) = κ ( λ , λ B , T , F ) t m 1 ,
I ( λ B , z , t ) z = α ( λ B , z , t ) I ( λ B , z , t ) ,
α ( λ , z , t ) t = κ ( λ , λ B , T , F ) t ( m 1 ) α ( λ B , z , t ) I ( λ B , z , t ) .
α ( λ , z , t = 0 ) = α 0 ( λ ) ,
I ( λ B , z = 0 , t ) = I 0 .
A ( λ 0 , t ) = 0 d α ( λ 0 , z , t ) d z = ln { 1 + [ exp ( α 0 d ) 1 ] exp ( κ 0 I 0 t m m ) } ,
I ( λ 0 , z , t ) = I 0 1 + [ exp ( α 0 z ) 1 ] exp ( κ 0 I 0 t m m ) ,
Δ A ( λ , t ) = 0 z Δ α ( λ , z , t ) d z = κ ( λ , λ 0 , T , 0 ) κ 0 × ( ln { 1 + [ exp ( α 0 z ) 1 ] × exp ( κ 0 I 0 t m m ) α 0 z } ) .
Δ α ( λ , z , t ) = κ ( λ , λ 0 , T , 0 ) κ 0 × α 0 [ 1 exp ( κ 0 I 0 t m m ) ] 1 + [ exp ( α 0 z ) 1 ] exp ( κ 0 I 0 t m m ) .
Δ n ( λ , z , t ) = c π P 0 Δ α ( λ , z , t ) λ 2 λ 2 d λ ,
Δ n ( λ , z , t ) = α 0 κ 0 × [ 1 exp ( κ 0 I 0 t m m ) ] H [ κ ( λ ) ] 1 + [ exp ( α 0 z ) 1 ] exp ( κ 0 I 0 t n / n ) ,
H [ κ ( λ ) ] = c π P 0 κ ( λ , λ ) λ 2 λ 2 d λ .

Metrics