Abstract

Multi-hundred-Gbits/s switching rates are demonstrated by the use of 1.5-ps- or 200-fs-long gate and probe pulses with a Kerr shutter based on short (<50 cm) single-mode optical fibers.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Stolen, A. Ashkin, “Optical Kerr effect in glass waveguide,” Appl. Phys. Lett. 22, 294–296 (1973).
    [CrossRef]
  2. J. M. Dziedzic, R. H. Stolen, A. Ashkin, “Optical Kerr effect in long fibers,” Appl. Opt. 20, 1403–1406 (1981).
    [CrossRef] [PubMed]
  3. T. Morioka, M. Saruwatari, A. Takada, “Ultrafast optical multi/demultiplexer utilizing optical Kerr effect in polarisation-maintaining single-mode fibres,” Electron. Lett. 23, 453–454 (1987);T. Morioka, M. Saruwatari, “Ultrafast all-optical switching utilizing the optical Kerr effect in polarization-maintaining single-mode fibers,” IEEE J. Select. Area Commun. 6, 1186–1198 (1988).
    [CrossRef]
  4. T. Morioka, M. Tsukada, M. Saruwatari, “Demonstration of 50 Gb/s all-optical Kerr demultiplexing utilizing pump-probe pulse walk-off in optical fibers,” in Photonic Switching II, K. Tada, H. S. Hilton, eds., Vol. 29 of Springer Series in Electronics and Photonics (Springer-Verlag, Berlin, 1990), pp. 126–129;T. Morioka, H. Takara, K. Mori, M. Saruwatari, “Ultrafast reflective optical Kerr demultiplexer using polarisation rotation mirror,” Electron. Lett. 28, 521–522 (1992).
    [CrossRef]
  5. M. Asobe, T. Kanamori, K. Kubodera, “Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber,” IEEE Photon. Technol. Lett. 4, 362–365 (1992);“Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,” IEEE J. Quantum Electron. 29, 2325–2332 (1993).
    [CrossRef]
  6. M. Asobe, H. Kobayashi, H. Itoh, T. Kanamori, “Laser-diode-driven ultrafast all-optical switching by using highly nonlinear chalcogenide glass fiber,” Opt. Lett. 18, 1056–1058 (1993);M. Asobe, H. Itoh, T. Miyazawa, T. Kanamori, “Efficient and ultrafast all-optical switching using high Δn, small core chalcogenide glass fibre,” Electron. Lett. 29, 1966– 1968 (1993).
    [CrossRef] [PubMed]
  7. K. Uchiyama, H. Takara, S. Kawanishi, T. Morioka, M. Saruwatari, T. Kitoh, “100 Gbit/s all-optical demultiplexing using nonlinear optical loop mirror with gating width control,” Electron. Lett. 29, 1870–1871 (1993);K. Uchiyama, S. Kawanishi, H. Takara, T. Morioka, M. Saruwatari, “100 Gbit/s to 6.3 Gbit/s demultiplexing experiment using polarisation-independent nonlinear optical loop mirror,” Electron. Lett. 30, 873–875 (1994).
    [CrossRef]
  8. F. Seifert, V. Petrov, “Ultrafast wavelength shift of 1.2-ps pulses at 1.2–1.7-μm induced by mode-locked Ti:sapphire laser,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 552–553.
  9. F. Seifert, V. Petrov, “Difference-frequency generation of near infrared picosecond pulses by noncritical temperature tuning in LiB3O5,” J. Appl. Phys. 74, 4798–4800 (1993).
    [CrossRef]
  10. O. Dühr, V. Petrov, F. Noack, F. Seifert, “Ultrafast Kerr demultiplexing at 170 Gb/s in short optical fibers,” in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 305–306.

1993 (3)

M. Asobe, H. Kobayashi, H. Itoh, T. Kanamori, “Laser-diode-driven ultrafast all-optical switching by using highly nonlinear chalcogenide glass fiber,” Opt. Lett. 18, 1056–1058 (1993);M. Asobe, H. Itoh, T. Miyazawa, T. Kanamori, “Efficient and ultrafast all-optical switching using high Δn, small core chalcogenide glass fibre,” Electron. Lett. 29, 1966– 1968 (1993).
[CrossRef] [PubMed]

K. Uchiyama, H. Takara, S. Kawanishi, T. Morioka, M. Saruwatari, T. Kitoh, “100 Gbit/s all-optical demultiplexing using nonlinear optical loop mirror with gating width control,” Electron. Lett. 29, 1870–1871 (1993);K. Uchiyama, S. Kawanishi, H. Takara, T. Morioka, M. Saruwatari, “100 Gbit/s to 6.3 Gbit/s demultiplexing experiment using polarisation-independent nonlinear optical loop mirror,” Electron. Lett. 30, 873–875 (1994).
[CrossRef]

F. Seifert, V. Petrov, “Difference-frequency generation of near infrared picosecond pulses by noncritical temperature tuning in LiB3O5,” J. Appl. Phys. 74, 4798–4800 (1993).
[CrossRef]

1992 (1)

M. Asobe, T. Kanamori, K. Kubodera, “Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber,” IEEE Photon. Technol. Lett. 4, 362–365 (1992);“Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,” IEEE J. Quantum Electron. 29, 2325–2332 (1993).
[CrossRef]

1987 (1)

T. Morioka, M. Saruwatari, A. Takada, “Ultrafast optical multi/demultiplexer utilizing optical Kerr effect in polarisation-maintaining single-mode fibres,” Electron. Lett. 23, 453–454 (1987);T. Morioka, M. Saruwatari, “Ultrafast all-optical switching utilizing the optical Kerr effect in polarization-maintaining single-mode fibers,” IEEE J. Select. Area Commun. 6, 1186–1198 (1988).
[CrossRef]

1981 (1)

1973 (1)

R. H. Stolen, A. Ashkin, “Optical Kerr effect in glass waveguide,” Appl. Phys. Lett. 22, 294–296 (1973).
[CrossRef]

Ashkin, A.

J. M. Dziedzic, R. H. Stolen, A. Ashkin, “Optical Kerr effect in long fibers,” Appl. Opt. 20, 1403–1406 (1981).
[CrossRef] [PubMed]

R. H. Stolen, A. Ashkin, “Optical Kerr effect in glass waveguide,” Appl. Phys. Lett. 22, 294–296 (1973).
[CrossRef]

Asobe, M.

M. Asobe, H. Kobayashi, H. Itoh, T. Kanamori, “Laser-diode-driven ultrafast all-optical switching by using highly nonlinear chalcogenide glass fiber,” Opt. Lett. 18, 1056–1058 (1993);M. Asobe, H. Itoh, T. Miyazawa, T. Kanamori, “Efficient and ultrafast all-optical switching using high Δn, small core chalcogenide glass fibre,” Electron. Lett. 29, 1966– 1968 (1993).
[CrossRef] [PubMed]

M. Asobe, T. Kanamori, K. Kubodera, “Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber,” IEEE Photon. Technol. Lett. 4, 362–365 (1992);“Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,” IEEE J. Quantum Electron. 29, 2325–2332 (1993).
[CrossRef]

Dühr, O.

O. Dühr, V. Petrov, F. Noack, F. Seifert, “Ultrafast Kerr demultiplexing at 170 Gb/s in short optical fibers,” in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 305–306.

Dziedzic, J. M.

Itoh, H.

Kanamori, T.

M. Asobe, H. Kobayashi, H. Itoh, T. Kanamori, “Laser-diode-driven ultrafast all-optical switching by using highly nonlinear chalcogenide glass fiber,” Opt. Lett. 18, 1056–1058 (1993);M. Asobe, H. Itoh, T. Miyazawa, T. Kanamori, “Efficient and ultrafast all-optical switching using high Δn, small core chalcogenide glass fibre,” Electron. Lett. 29, 1966– 1968 (1993).
[CrossRef] [PubMed]

M. Asobe, T. Kanamori, K. Kubodera, “Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber,” IEEE Photon. Technol. Lett. 4, 362–365 (1992);“Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,” IEEE J. Quantum Electron. 29, 2325–2332 (1993).
[CrossRef]

Kawanishi, S.

K. Uchiyama, H. Takara, S. Kawanishi, T. Morioka, M. Saruwatari, T. Kitoh, “100 Gbit/s all-optical demultiplexing using nonlinear optical loop mirror with gating width control,” Electron. Lett. 29, 1870–1871 (1993);K. Uchiyama, S. Kawanishi, H. Takara, T. Morioka, M. Saruwatari, “100 Gbit/s to 6.3 Gbit/s demultiplexing experiment using polarisation-independent nonlinear optical loop mirror,” Electron. Lett. 30, 873–875 (1994).
[CrossRef]

Kitoh, T.

K. Uchiyama, H. Takara, S. Kawanishi, T. Morioka, M. Saruwatari, T. Kitoh, “100 Gbit/s all-optical demultiplexing using nonlinear optical loop mirror with gating width control,” Electron. Lett. 29, 1870–1871 (1993);K. Uchiyama, S. Kawanishi, H. Takara, T. Morioka, M. Saruwatari, “100 Gbit/s to 6.3 Gbit/s demultiplexing experiment using polarisation-independent nonlinear optical loop mirror,” Electron. Lett. 30, 873–875 (1994).
[CrossRef]

Kobayashi, H.

Kubodera, K.

M. Asobe, T. Kanamori, K. Kubodera, “Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber,” IEEE Photon. Technol. Lett. 4, 362–365 (1992);“Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,” IEEE J. Quantum Electron. 29, 2325–2332 (1993).
[CrossRef]

Morioka, T.

K. Uchiyama, H. Takara, S. Kawanishi, T. Morioka, M. Saruwatari, T. Kitoh, “100 Gbit/s all-optical demultiplexing using nonlinear optical loop mirror with gating width control,” Electron. Lett. 29, 1870–1871 (1993);K. Uchiyama, S. Kawanishi, H. Takara, T. Morioka, M. Saruwatari, “100 Gbit/s to 6.3 Gbit/s demultiplexing experiment using polarisation-independent nonlinear optical loop mirror,” Electron. Lett. 30, 873–875 (1994).
[CrossRef]

T. Morioka, M. Saruwatari, A. Takada, “Ultrafast optical multi/demultiplexer utilizing optical Kerr effect in polarisation-maintaining single-mode fibres,” Electron. Lett. 23, 453–454 (1987);T. Morioka, M. Saruwatari, “Ultrafast all-optical switching utilizing the optical Kerr effect in polarization-maintaining single-mode fibers,” IEEE J. Select. Area Commun. 6, 1186–1198 (1988).
[CrossRef]

T. Morioka, M. Tsukada, M. Saruwatari, “Demonstration of 50 Gb/s all-optical Kerr demultiplexing utilizing pump-probe pulse walk-off in optical fibers,” in Photonic Switching II, K. Tada, H. S. Hilton, eds., Vol. 29 of Springer Series in Electronics and Photonics (Springer-Verlag, Berlin, 1990), pp. 126–129;T. Morioka, H. Takara, K. Mori, M. Saruwatari, “Ultrafast reflective optical Kerr demultiplexer using polarisation rotation mirror,” Electron. Lett. 28, 521–522 (1992).
[CrossRef]

Noack, F.

O. Dühr, V. Petrov, F. Noack, F. Seifert, “Ultrafast Kerr demultiplexing at 170 Gb/s in short optical fibers,” in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 305–306.

Petrov, V.

F. Seifert, V. Petrov, “Difference-frequency generation of near infrared picosecond pulses by noncritical temperature tuning in LiB3O5,” J. Appl. Phys. 74, 4798–4800 (1993).
[CrossRef]

O. Dühr, V. Petrov, F. Noack, F. Seifert, “Ultrafast Kerr demultiplexing at 170 Gb/s in short optical fibers,” in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 305–306.

F. Seifert, V. Petrov, “Ultrafast wavelength shift of 1.2-ps pulses at 1.2–1.7-μm induced by mode-locked Ti:sapphire laser,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 552–553.

Saruwatari, M.

K. Uchiyama, H. Takara, S. Kawanishi, T. Morioka, M. Saruwatari, T. Kitoh, “100 Gbit/s all-optical demultiplexing using nonlinear optical loop mirror with gating width control,” Electron. Lett. 29, 1870–1871 (1993);K. Uchiyama, S. Kawanishi, H. Takara, T. Morioka, M. Saruwatari, “100 Gbit/s to 6.3 Gbit/s demultiplexing experiment using polarisation-independent nonlinear optical loop mirror,” Electron. Lett. 30, 873–875 (1994).
[CrossRef]

T. Morioka, M. Saruwatari, A. Takada, “Ultrafast optical multi/demultiplexer utilizing optical Kerr effect in polarisation-maintaining single-mode fibres,” Electron. Lett. 23, 453–454 (1987);T. Morioka, M. Saruwatari, “Ultrafast all-optical switching utilizing the optical Kerr effect in polarization-maintaining single-mode fibers,” IEEE J. Select. Area Commun. 6, 1186–1198 (1988).
[CrossRef]

T. Morioka, M. Tsukada, M. Saruwatari, “Demonstration of 50 Gb/s all-optical Kerr demultiplexing utilizing pump-probe pulse walk-off in optical fibers,” in Photonic Switching II, K. Tada, H. S. Hilton, eds., Vol. 29 of Springer Series in Electronics and Photonics (Springer-Verlag, Berlin, 1990), pp. 126–129;T. Morioka, H. Takara, K. Mori, M. Saruwatari, “Ultrafast reflective optical Kerr demultiplexer using polarisation rotation mirror,” Electron. Lett. 28, 521–522 (1992).
[CrossRef]

Seifert, F.

F. Seifert, V. Petrov, “Difference-frequency generation of near infrared picosecond pulses by noncritical temperature tuning in LiB3O5,” J. Appl. Phys. 74, 4798–4800 (1993).
[CrossRef]

F. Seifert, V. Petrov, “Ultrafast wavelength shift of 1.2-ps pulses at 1.2–1.7-μm induced by mode-locked Ti:sapphire laser,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 552–553.

O. Dühr, V. Petrov, F. Noack, F. Seifert, “Ultrafast Kerr demultiplexing at 170 Gb/s in short optical fibers,” in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 305–306.

Stolen, R. H.

J. M. Dziedzic, R. H. Stolen, A. Ashkin, “Optical Kerr effect in long fibers,” Appl. Opt. 20, 1403–1406 (1981).
[CrossRef] [PubMed]

R. H. Stolen, A. Ashkin, “Optical Kerr effect in glass waveguide,” Appl. Phys. Lett. 22, 294–296 (1973).
[CrossRef]

Takada, A.

T. Morioka, M. Saruwatari, A. Takada, “Ultrafast optical multi/demultiplexer utilizing optical Kerr effect in polarisation-maintaining single-mode fibres,” Electron. Lett. 23, 453–454 (1987);T. Morioka, M. Saruwatari, “Ultrafast all-optical switching utilizing the optical Kerr effect in polarization-maintaining single-mode fibers,” IEEE J. Select. Area Commun. 6, 1186–1198 (1988).
[CrossRef]

Takara, H.

K. Uchiyama, H. Takara, S. Kawanishi, T. Morioka, M. Saruwatari, T. Kitoh, “100 Gbit/s all-optical demultiplexing using nonlinear optical loop mirror with gating width control,” Electron. Lett. 29, 1870–1871 (1993);K. Uchiyama, S. Kawanishi, H. Takara, T. Morioka, M. Saruwatari, “100 Gbit/s to 6.3 Gbit/s demultiplexing experiment using polarisation-independent nonlinear optical loop mirror,” Electron. Lett. 30, 873–875 (1994).
[CrossRef]

Tsukada, M.

T. Morioka, M. Tsukada, M. Saruwatari, “Demonstration of 50 Gb/s all-optical Kerr demultiplexing utilizing pump-probe pulse walk-off in optical fibers,” in Photonic Switching II, K. Tada, H. S. Hilton, eds., Vol. 29 of Springer Series in Electronics and Photonics (Springer-Verlag, Berlin, 1990), pp. 126–129;T. Morioka, H. Takara, K. Mori, M. Saruwatari, “Ultrafast reflective optical Kerr demultiplexer using polarisation rotation mirror,” Electron. Lett. 28, 521–522 (1992).
[CrossRef]

Uchiyama, K.

K. Uchiyama, H. Takara, S. Kawanishi, T. Morioka, M. Saruwatari, T. Kitoh, “100 Gbit/s all-optical demultiplexing using nonlinear optical loop mirror with gating width control,” Electron. Lett. 29, 1870–1871 (1993);K. Uchiyama, S. Kawanishi, H. Takara, T. Morioka, M. Saruwatari, “100 Gbit/s to 6.3 Gbit/s demultiplexing experiment using polarisation-independent nonlinear optical loop mirror,” Electron. Lett. 30, 873–875 (1994).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R. H. Stolen, A. Ashkin, “Optical Kerr effect in glass waveguide,” Appl. Phys. Lett. 22, 294–296 (1973).
[CrossRef]

Electron. Lett. (2)

T. Morioka, M. Saruwatari, A. Takada, “Ultrafast optical multi/demultiplexer utilizing optical Kerr effect in polarisation-maintaining single-mode fibres,” Electron. Lett. 23, 453–454 (1987);T. Morioka, M. Saruwatari, “Ultrafast all-optical switching utilizing the optical Kerr effect in polarization-maintaining single-mode fibers,” IEEE J. Select. Area Commun. 6, 1186–1198 (1988).
[CrossRef]

K. Uchiyama, H. Takara, S. Kawanishi, T. Morioka, M. Saruwatari, T. Kitoh, “100 Gbit/s all-optical demultiplexing using nonlinear optical loop mirror with gating width control,” Electron. Lett. 29, 1870–1871 (1993);K. Uchiyama, S. Kawanishi, H. Takara, T. Morioka, M. Saruwatari, “100 Gbit/s to 6.3 Gbit/s demultiplexing experiment using polarisation-independent nonlinear optical loop mirror,” Electron. Lett. 30, 873–875 (1994).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Asobe, T. Kanamori, K. Kubodera, “Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber,” IEEE Photon. Technol. Lett. 4, 362–365 (1992);“Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,” IEEE J. Quantum Electron. 29, 2325–2332 (1993).
[CrossRef]

J. Appl. Phys. (1)

F. Seifert, V. Petrov, “Difference-frequency generation of near infrared picosecond pulses by noncritical temperature tuning in LiB3O5,” J. Appl. Phys. 74, 4798–4800 (1993).
[CrossRef]

Opt. Lett. (1)

Other (3)

T. Morioka, M. Tsukada, M. Saruwatari, “Demonstration of 50 Gb/s all-optical Kerr demultiplexing utilizing pump-probe pulse walk-off in optical fibers,” in Photonic Switching II, K. Tada, H. S. Hilton, eds., Vol. 29 of Springer Series in Electronics and Photonics (Springer-Verlag, Berlin, 1990), pp. 126–129;T. Morioka, H. Takara, K. Mori, M. Saruwatari, “Ultrafast reflective optical Kerr demultiplexer using polarisation rotation mirror,” Electron. Lett. 28, 521–522 (1992).
[CrossRef]

O. Dühr, V. Petrov, F. Noack, F. Seifert, “Ultrafast Kerr demultiplexing at 170 Gb/s in short optical fibers,” in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 305–306.

F. Seifert, V. Petrov, “Ultrafast wavelength shift of 1.2-ps pulses at 1.2–1.7-μm induced by mode-locked Ti:sapphire laser,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 552–553.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the experimental setup: F's, filters; DM's, dichroic mirrors; Ge-PD, germanium photodiode. Lens L1 serves to optimize the waist parameter in the LBO mixing crystal, and lens L2 serves to optimize the simultaneous coupling of the pump and probe beams into the fiber.

Fig. 2
Fig. 2

(a) CCF of a 2.9-THz burst at 800 nm generated with the femtosecond version of the Ti:sapphire laser and single pulses at 82 MHz from the same laser measured through noncollinear second-harmonic generation in a 1-mm-thick β-barium borate (BBO) crystal (type I phase matching). The FWHM's correspond to ≈100-fs pulse duration, assuming Gaussian pulse shapes. (b) CCF of a 48-GHz picosecond burst at λprobe = 1410 nm with Ti:sapphire laser pulses at λpump = 810 nm obtained through sum-frequency generation (type I phase matching) in a 1-mm-thick BBO crystal. The FWHM's correspond to τpump = τprobe = 1.5 ps.

Fig. 3
Fig. 3

Ultrafast demultiplexing at (a) 110 Gbits/s (L = 22 cm) and (b) 170 Gbits/s (L = 14 cm). The different amplitudes of the individual signal pulses are due to the difficulty in coupling equal energy of the four probe pulses caused by imperfect spatial overlap of the gigahertz burst.

Fig. 4
Fig. 4

Demultiplexing in the femtosecond regime at 460 Gbits/s. λpump = 783 nm, λprobe = 1500 nm, τpump = 210 fs, τprobe = 235 fs.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ Φ ( t ) = 8 π n 2 I 0 L 3 λ probe ζ [ erf ( α ) erf ( α ζ ) ] ,

Metrics