Abstract

Phase-retrieval measurements of point-spread functions from the pre- and post-repair Hubble Space Telescope are presented. The primary goal was to determine the aberrations present in the second wide-field and planetary camera (WFPC2) to align and validate its corrective optics. With both parametric model-fitting techniques and iterative (Gerchberg–Saxton) methods, accurate measurements have been obtained of the WFPC2 and Hubble Space Telescope optics, including improved maps of the zonal errors in the mirrors. Additional phase-retrieval results were obtained for the aberrated, prerepair cameras and the corrected faint-object camera. The information has been used to improve models produced by point-spread-function simulation programs. On the basis of the measurements a conic constant for the primary mirror of κ = −1.0144 has been derived.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Krist, tiny tim User’s Manual Version 4.0, (Space Telescope Institute, Baltimore, Md., 1994).
  2. H. Hasan, C. Burrows, “Telescope Image Modelling,” submitted to Pub. Astronomical Society of the Pacific (1994).
  3. C. Roddier, F. Roddier, “Combined approach to the Hubble Space Telescope wave-front distortion analysis,” Appl. Opt. 32, 2992–3008 (1993).
    [CrossRef] [PubMed]
  4. R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttgart) 35, 237–246 (1972).
  5. C. Burrows, ed., WFPC2 Instrument Handbook Version 2.0, (Space Telescope Science Institute, Baltimore, Md., 1994).
  6. J. R. Fienup, J. C. Marron, T. J. Schulz, J. H. Seldin, “Hubble Space Telescope characterized by using phase-retrieval algorithms,” Appl. Opt. 32, 1747–1767 (1993).
    [CrossRef] [PubMed]
  7. T. Barrett, D. Sandler, “Artificial neural network for the determination of Hubble Space Telescope aberration from stellar images,” Appl. Opt. 32, 1768–1774 (1993).
    [CrossRef]
  8. C. Burrows, J. Holtzman, S. Faber, P. Bely, H. Hasan, C. Lynds, D. Schroeder, “The Imaging Performance of the Hubble Space Telescope,” Astrophysical J. 369, L21–L25 (1991).
    [CrossRef]
  9. “Final report: Hubble Independent Optical Review Panel,” Doc. P-442-0078 (Goddard Space Flight Center, Greenbelt, Md., 1992).
  10. L. Furey, Memo A16-ST-0316 (Hughes Danbury Optical Systems, Danbury, Conn., 2May1994).

1993 (3)

1991 (1)

C. Burrows, J. Holtzman, S. Faber, P. Bely, H. Hasan, C. Lynds, D. Schroeder, “The Imaging Performance of the Hubble Space Telescope,” Astrophysical J. 369, L21–L25 (1991).
[CrossRef]

1972 (1)

R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttgart) 35, 237–246 (1972).

Barrett, T.

Bely, P.

C. Burrows, J. Holtzman, S. Faber, P. Bely, H. Hasan, C. Lynds, D. Schroeder, “The Imaging Performance of the Hubble Space Telescope,” Astrophysical J. 369, L21–L25 (1991).
[CrossRef]

Burrows, C.

C. Burrows, J. Holtzman, S. Faber, P. Bely, H. Hasan, C. Lynds, D. Schroeder, “The Imaging Performance of the Hubble Space Telescope,” Astrophysical J. 369, L21–L25 (1991).
[CrossRef]

H. Hasan, C. Burrows, “Telescope Image Modelling,” submitted to Pub. Astronomical Society of the Pacific (1994).

Faber, S.

C. Burrows, J. Holtzman, S. Faber, P. Bely, H. Hasan, C. Lynds, D. Schroeder, “The Imaging Performance of the Hubble Space Telescope,” Astrophysical J. 369, L21–L25 (1991).
[CrossRef]

Fienup, J. R.

Furey, L.

L. Furey, Memo A16-ST-0316 (Hughes Danbury Optical Systems, Danbury, Conn., 2May1994).

Gerchberg, R. W.

R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttgart) 35, 237–246 (1972).

Hasan, H.

C. Burrows, J. Holtzman, S. Faber, P. Bely, H. Hasan, C. Lynds, D. Schroeder, “The Imaging Performance of the Hubble Space Telescope,” Astrophysical J. 369, L21–L25 (1991).
[CrossRef]

H. Hasan, C. Burrows, “Telescope Image Modelling,” submitted to Pub. Astronomical Society of the Pacific (1994).

Holtzman, J.

C. Burrows, J. Holtzman, S. Faber, P. Bely, H. Hasan, C. Lynds, D. Schroeder, “The Imaging Performance of the Hubble Space Telescope,” Astrophysical J. 369, L21–L25 (1991).
[CrossRef]

Krist, J.

J. Krist, tiny tim User’s Manual Version 4.0, (Space Telescope Institute, Baltimore, Md., 1994).

Lynds, C.

C. Burrows, J. Holtzman, S. Faber, P. Bely, H. Hasan, C. Lynds, D. Schroeder, “The Imaging Performance of the Hubble Space Telescope,” Astrophysical J. 369, L21–L25 (1991).
[CrossRef]

Marron, J. C.

Roddier, C.

Roddier, F.

Sandler, D.

Saxton, W. O.

R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttgart) 35, 237–246 (1972).

Schroeder, D.

C. Burrows, J. Holtzman, S. Faber, P. Bely, H. Hasan, C. Lynds, D. Schroeder, “The Imaging Performance of the Hubble Space Telescope,” Astrophysical J. 369, L21–L25 (1991).
[CrossRef]

Schulz, T. J.

Seldin, J. H.

Appl. Opt. (3)

Astrophysical J. (1)

C. Burrows, J. Holtzman, S. Faber, P. Bely, H. Hasan, C. Lynds, D. Schroeder, “The Imaging Performance of the Hubble Space Telescope,” Astrophysical J. 369, L21–L25 (1991).
[CrossRef]

Optik (Stuttgart) (1)

R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttgart) 35, 237–246 (1972).

Other (5)

C. Burrows, ed., WFPC2 Instrument Handbook Version 2.0, (Space Telescope Science Institute, Baltimore, Md., 1994).

J. Krist, tiny tim User’s Manual Version 4.0, (Space Telescope Institute, Baltimore, Md., 1994).

H. Hasan, C. Burrows, “Telescope Image Modelling,” submitted to Pub. Astronomical Society of the Pacific (1994).

“Final report: Hubble Independent Optical Review Panel,” Doc. P-442-0078 (Goddard Space Flight Center, Greenbelt, Md., 1992).

L. Furey, Memo A16-ST-0316 (Hughes Danbury Optical Systems, Danbury, Conn., 2May1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the WFPC2 optical layout.

Fig. 2
Fig. 2

Pupil amplitude in the WFPC2 PC derived from 15 GS iterations and constrained only outside the pupil.

Fig. 3
Fig. 3

Mirror zonal-error maps scaled between ±0.03 μm of the surface error with WFPC2 and OTA obscurations superposed.

Fig. 4
Fig. 4

Azimuthal averages plotted for a one-quarter section of the old and new zonal-error maps.

Fig. 5
Fig. 5

Data and the corresponding fitted images from the PC of WFPC2.

Fig. 6
Fig. 6

Observed PSF (ΔSM = −360 μm) and tiny tim models for the WFPC2 PC at 170 nm (filter F170W) using retrieved aberrations.

Fig. 7
Fig. 7

Fitted data to the WF/PC-1 PC6, filter F486N PSF (ΔSM = −260 μm). The observed PSF includes cosmic rays, dust artifacts, and bad CCD columns.

Fig. 8
Fig. 8

In-focus FOC (f/96) observed and tiny tim model PSFs (prerepair) with aberrations determined from the phase retrieval.

Tables (4)

Tables Icon

Table 1 Zernike Polynomials Used in the Phase Retrievals

Tables Icon

Table 2 Measured rms Aberrations (μm) in the (U2, U3) Coordinates

Tables Icon

Table 3 Effect of Additional Terms on the Fitting Parameters and the Quality of Fit

Tables Icon

Table 4 Measured Spherical-Aberration (Z11) Values and the Corresponding Conic Constants

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

κ = - 1.00223 + Z 11 0.6328 + 0.0256 δ 35.30 ,

Metrics