Abstract

We have developed an instrument for directly measuring the emissivity of reflective surfaces at near-millimeter wavelengths. The thermal emission of a test sample is compared with that of a reference surface, allowing the emissivity of the sample to be determined without heating. The emissivity of the reference surface is determined by one’s heating the reference surface and measuring the increase in emission. The instrument has an absolute accuracy of Δ∊ = 5 × 10−4 and can reproducibly measure a difference in emissivity as small as Δ∊ = 10−4 between flat reflective samples. We have used the instrument to measure the emissivity of metal films evaporated on glass and carbon fiber-reinforced plastic composite surfaces. We measure an emissivity of (2.15 ± 0.4) × 10−3 for gold evaporated on glass and (2.65 ± 0.5) × 10−3 for aluminum evaporated on carbon fiber-reinforced plastic composite.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. L. Fischer, D. C. Alsop, E. S. Cheng, A. C. Clapp, D. A. Cottingham, J. O. Gundersen, T. C. Koch, E. Kreysa, P. R. Meinhold, A. E. Lange, P. M. Lubin, P. L. Richards, G. F. Smoot, “A bolometric millimeter-wave system for observations of anisotropy in the cosmic microwave background radiation on medium angular scales,” Astrophys. J. 388, 242–252 (1992).
    [CrossRef]
  2. A. E. Lange, J. J. Bock, P. Mason, “The far-infrared explorer (FIRE),” in Infrared and Submilliter Space Missions in the Coming Decade, H. Thomson, M. Sauvage, P. Gallais, L. Vigroux, eds., Space Sci. Rev.74, 151–156 (1995).
    [CrossRef]
  3. S. S. Tompkins, D. E. Bowles, J. G. Funk, J. A. Lavoie, T. W. Towell, “The development of composite materials for spacecraft precision reflector panels,” in Advances in Optical Structure Systems, J. Breakwell, V. L. Genberg, G. C. Krumweide, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1303, 512–523 (1990).
  4. W. F. Hoffmann, “Light-weight composite mirrors for space submillimeter astronomy,” in Space-Borne Sub-Millimeter Astronomy Mission, ESA SP 260, N. Longdon, ed. (European Space Agency Publications Division, Noordwijk, The Netherlands, 1986), pp. 231–238.
  5. M. A. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975), pp. 611–633.
  6. A. E. Lange, E. Kreysa, S. E. McBride, P. L. Richards, E. E. Haller, “Improved fabrication techniques for infrared bolometers,” Int. J. Infrared Millimeter Waves 4, 689–706 (1983).
    [CrossRef]
  7. K. D. Möller, D. J. McMahom, D. R. Smith, “Far-infrared transmission of filters for the 300–18-cm−1 spectral region,” Appl. Opt. 5, 403–406 (1966).
    [CrossRef] [PubMed]
  8. M. Halpern, H. P. Gush, E. Wishnow, V. De Cosmo, “Far infrared transmission of dielectrics at cryogenic and room temperatures: glass, Fluorogold, Eccosorb, Stycast, and various plastics,” Appl. Opt. 25, 565–570 (1986).
    [CrossRef] [PubMed]
  9. S. Sato, S. Hayakawa, T. Matsumoto, H. Matsuo, H. Murakami, K. Sakai, A. E. Lange, P. L. Richards, “Submillimeter wave low pass filters made of glass beads,” Appl. Opt. 28, 4478–4481 (1989).
    [CrossRef] [PubMed]
  10. K. J. Leipoldt, T. Happich, E. Kreysa, H. -P. Gemünd, “Scattering matrix methods for far-infrared metal mesh filters,” Int. J. Infrared Millimeter Waves 12, 263–274 (1991).
    [CrossRef]
  11. T. Timusk, P. L. Richards, “Near millimeter wave bandpass filters,” Appl. Opt. 20, 1355–1360 (1981).
    [CrossRef] [PubMed]
  12. R. Winston, “Light collection within the framework of geometrical optics,” J. Opt. Soc. Am. 60, 245–247 (1970).
    [CrossRef]
  13. Emerson & Cuming, Inc., AN-72, Woburn, Mass. 01888.

1992 (1)

M. L. Fischer, D. C. Alsop, E. S. Cheng, A. C. Clapp, D. A. Cottingham, J. O. Gundersen, T. C. Koch, E. Kreysa, P. R. Meinhold, A. E. Lange, P. M. Lubin, P. L. Richards, G. F. Smoot, “A bolometric millimeter-wave system for observations of anisotropy in the cosmic microwave background radiation on medium angular scales,” Astrophys. J. 388, 242–252 (1992).
[CrossRef]

1991 (1)

K. J. Leipoldt, T. Happich, E. Kreysa, H. -P. Gemünd, “Scattering matrix methods for far-infrared metal mesh filters,” Int. J. Infrared Millimeter Waves 12, 263–274 (1991).
[CrossRef]

1989 (1)

1986 (1)

1983 (1)

A. E. Lange, E. Kreysa, S. E. McBride, P. L. Richards, E. E. Haller, “Improved fabrication techniques for infrared bolometers,” Int. J. Infrared Millimeter Waves 4, 689–706 (1983).
[CrossRef]

1981 (1)

1970 (1)

1966 (1)

Alsop, D. C.

M. L. Fischer, D. C. Alsop, E. S. Cheng, A. C. Clapp, D. A. Cottingham, J. O. Gundersen, T. C. Koch, E. Kreysa, P. R. Meinhold, A. E. Lange, P. M. Lubin, P. L. Richards, G. F. Smoot, “A bolometric millimeter-wave system for observations of anisotropy in the cosmic microwave background radiation on medium angular scales,” Astrophys. J. 388, 242–252 (1992).
[CrossRef]

Bock, J. J.

A. E. Lange, J. J. Bock, P. Mason, “The far-infrared explorer (FIRE),” in Infrared and Submilliter Space Missions in the Coming Decade, H. Thomson, M. Sauvage, P. Gallais, L. Vigroux, eds., Space Sci. Rev.74, 151–156 (1995).
[CrossRef]

Born, M. A.

M. A. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975), pp. 611–633.

Bowles, D. E.

S. S. Tompkins, D. E. Bowles, J. G. Funk, J. A. Lavoie, T. W. Towell, “The development of composite materials for spacecraft precision reflector panels,” in Advances in Optical Structure Systems, J. Breakwell, V. L. Genberg, G. C. Krumweide, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1303, 512–523 (1990).

Cheng, E. S.

M. L. Fischer, D. C. Alsop, E. S. Cheng, A. C. Clapp, D. A. Cottingham, J. O. Gundersen, T. C. Koch, E. Kreysa, P. R. Meinhold, A. E. Lange, P. M. Lubin, P. L. Richards, G. F. Smoot, “A bolometric millimeter-wave system for observations of anisotropy in the cosmic microwave background radiation on medium angular scales,” Astrophys. J. 388, 242–252 (1992).
[CrossRef]

Clapp, A. C.

M. L. Fischer, D. C. Alsop, E. S. Cheng, A. C. Clapp, D. A. Cottingham, J. O. Gundersen, T. C. Koch, E. Kreysa, P. R. Meinhold, A. E. Lange, P. M. Lubin, P. L. Richards, G. F. Smoot, “A bolometric millimeter-wave system for observations of anisotropy in the cosmic microwave background radiation on medium angular scales,” Astrophys. J. 388, 242–252 (1992).
[CrossRef]

Cottingham, D. A.

M. L. Fischer, D. C. Alsop, E. S. Cheng, A. C. Clapp, D. A. Cottingham, J. O. Gundersen, T. C. Koch, E. Kreysa, P. R. Meinhold, A. E. Lange, P. M. Lubin, P. L. Richards, G. F. Smoot, “A bolometric millimeter-wave system for observations of anisotropy in the cosmic microwave background radiation on medium angular scales,” Astrophys. J. 388, 242–252 (1992).
[CrossRef]

De Cosmo, V.

Fischer, M. L.

M. L. Fischer, D. C. Alsop, E. S. Cheng, A. C. Clapp, D. A. Cottingham, J. O. Gundersen, T. C. Koch, E. Kreysa, P. R. Meinhold, A. E. Lange, P. M. Lubin, P. L. Richards, G. F. Smoot, “A bolometric millimeter-wave system for observations of anisotropy in the cosmic microwave background radiation on medium angular scales,” Astrophys. J. 388, 242–252 (1992).
[CrossRef]

Funk, J. G.

S. S. Tompkins, D. E. Bowles, J. G. Funk, J. A. Lavoie, T. W. Towell, “The development of composite materials for spacecraft precision reflector panels,” in Advances in Optical Structure Systems, J. Breakwell, V. L. Genberg, G. C. Krumweide, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1303, 512–523 (1990).

Gemünd, H. -P.

K. J. Leipoldt, T. Happich, E. Kreysa, H. -P. Gemünd, “Scattering matrix methods for far-infrared metal mesh filters,” Int. J. Infrared Millimeter Waves 12, 263–274 (1991).
[CrossRef]

Gundersen, J. O.

M. L. Fischer, D. C. Alsop, E. S. Cheng, A. C. Clapp, D. A. Cottingham, J. O. Gundersen, T. C. Koch, E. Kreysa, P. R. Meinhold, A. E. Lange, P. M. Lubin, P. L. Richards, G. F. Smoot, “A bolometric millimeter-wave system for observations of anisotropy in the cosmic microwave background radiation on medium angular scales,” Astrophys. J. 388, 242–252 (1992).
[CrossRef]

Gush, H. P.

Haller, E. E.

A. E. Lange, E. Kreysa, S. E. McBride, P. L. Richards, E. E. Haller, “Improved fabrication techniques for infrared bolometers,” Int. J. Infrared Millimeter Waves 4, 689–706 (1983).
[CrossRef]

Halpern, M.

Happich, T.

K. J. Leipoldt, T. Happich, E. Kreysa, H. -P. Gemünd, “Scattering matrix methods for far-infrared metal mesh filters,” Int. J. Infrared Millimeter Waves 12, 263–274 (1991).
[CrossRef]

Hayakawa, S.

Hoffmann, W. F.

W. F. Hoffmann, “Light-weight composite mirrors for space submillimeter astronomy,” in Space-Borne Sub-Millimeter Astronomy Mission, ESA SP 260, N. Longdon, ed. (European Space Agency Publications Division, Noordwijk, The Netherlands, 1986), pp. 231–238.

Koch, T. C.

M. L. Fischer, D. C. Alsop, E. S. Cheng, A. C. Clapp, D. A. Cottingham, J. O. Gundersen, T. C. Koch, E. Kreysa, P. R. Meinhold, A. E. Lange, P. M. Lubin, P. L. Richards, G. F. Smoot, “A bolometric millimeter-wave system for observations of anisotropy in the cosmic microwave background radiation on medium angular scales,” Astrophys. J. 388, 242–252 (1992).
[CrossRef]

Kreysa, E.

M. L. Fischer, D. C. Alsop, E. S. Cheng, A. C. Clapp, D. A. Cottingham, J. O. Gundersen, T. C. Koch, E. Kreysa, P. R. Meinhold, A. E. Lange, P. M. Lubin, P. L. Richards, G. F. Smoot, “A bolometric millimeter-wave system for observations of anisotropy in the cosmic microwave background radiation on medium angular scales,” Astrophys. J. 388, 242–252 (1992).
[CrossRef]

K. J. Leipoldt, T. Happich, E. Kreysa, H. -P. Gemünd, “Scattering matrix methods for far-infrared metal mesh filters,” Int. J. Infrared Millimeter Waves 12, 263–274 (1991).
[CrossRef]

A. E. Lange, E. Kreysa, S. E. McBride, P. L. Richards, E. E. Haller, “Improved fabrication techniques for infrared bolometers,” Int. J. Infrared Millimeter Waves 4, 689–706 (1983).
[CrossRef]

Lange, A. E.

M. L. Fischer, D. C. Alsop, E. S. Cheng, A. C. Clapp, D. A. Cottingham, J. O. Gundersen, T. C. Koch, E. Kreysa, P. R. Meinhold, A. E. Lange, P. M. Lubin, P. L. Richards, G. F. Smoot, “A bolometric millimeter-wave system for observations of anisotropy in the cosmic microwave background radiation on medium angular scales,” Astrophys. J. 388, 242–252 (1992).
[CrossRef]

S. Sato, S. Hayakawa, T. Matsumoto, H. Matsuo, H. Murakami, K. Sakai, A. E. Lange, P. L. Richards, “Submillimeter wave low pass filters made of glass beads,” Appl. Opt. 28, 4478–4481 (1989).
[CrossRef] [PubMed]

A. E. Lange, E. Kreysa, S. E. McBride, P. L. Richards, E. E. Haller, “Improved fabrication techniques for infrared bolometers,” Int. J. Infrared Millimeter Waves 4, 689–706 (1983).
[CrossRef]

A. E. Lange, J. J. Bock, P. Mason, “The far-infrared explorer (FIRE),” in Infrared and Submilliter Space Missions in the Coming Decade, H. Thomson, M. Sauvage, P. Gallais, L. Vigroux, eds., Space Sci. Rev.74, 151–156 (1995).
[CrossRef]

Lavoie, J. A.

S. S. Tompkins, D. E. Bowles, J. G. Funk, J. A. Lavoie, T. W. Towell, “The development of composite materials for spacecraft precision reflector panels,” in Advances in Optical Structure Systems, J. Breakwell, V. L. Genberg, G. C. Krumweide, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1303, 512–523 (1990).

Leipoldt, K. J.

K. J. Leipoldt, T. Happich, E. Kreysa, H. -P. Gemünd, “Scattering matrix methods for far-infrared metal mesh filters,” Int. J. Infrared Millimeter Waves 12, 263–274 (1991).
[CrossRef]

Lubin, P. M.

M. L. Fischer, D. C. Alsop, E. S. Cheng, A. C. Clapp, D. A. Cottingham, J. O. Gundersen, T. C. Koch, E. Kreysa, P. R. Meinhold, A. E. Lange, P. M. Lubin, P. L. Richards, G. F. Smoot, “A bolometric millimeter-wave system for observations of anisotropy in the cosmic microwave background radiation on medium angular scales,” Astrophys. J. 388, 242–252 (1992).
[CrossRef]

Mason, P.

A. E. Lange, J. J. Bock, P. Mason, “The far-infrared explorer (FIRE),” in Infrared and Submilliter Space Missions in the Coming Decade, H. Thomson, M. Sauvage, P. Gallais, L. Vigroux, eds., Space Sci. Rev.74, 151–156 (1995).
[CrossRef]

Matsumoto, T.

Matsuo, H.

McBride, S. E.

A. E. Lange, E. Kreysa, S. E. McBride, P. L. Richards, E. E. Haller, “Improved fabrication techniques for infrared bolometers,” Int. J. Infrared Millimeter Waves 4, 689–706 (1983).
[CrossRef]

McMahom, D. J.

Meinhold, P. R.

M. L. Fischer, D. C. Alsop, E. S. Cheng, A. C. Clapp, D. A. Cottingham, J. O. Gundersen, T. C. Koch, E. Kreysa, P. R. Meinhold, A. E. Lange, P. M. Lubin, P. L. Richards, G. F. Smoot, “A bolometric millimeter-wave system for observations of anisotropy in the cosmic microwave background radiation on medium angular scales,” Astrophys. J. 388, 242–252 (1992).
[CrossRef]

Möller, K. D.

Murakami, H.

Richards, P. L.

M. L. Fischer, D. C. Alsop, E. S. Cheng, A. C. Clapp, D. A. Cottingham, J. O. Gundersen, T. C. Koch, E. Kreysa, P. R. Meinhold, A. E. Lange, P. M. Lubin, P. L. Richards, G. F. Smoot, “A bolometric millimeter-wave system for observations of anisotropy in the cosmic microwave background radiation on medium angular scales,” Astrophys. J. 388, 242–252 (1992).
[CrossRef]

S. Sato, S. Hayakawa, T. Matsumoto, H. Matsuo, H. Murakami, K. Sakai, A. E. Lange, P. L. Richards, “Submillimeter wave low pass filters made of glass beads,” Appl. Opt. 28, 4478–4481 (1989).
[CrossRef] [PubMed]

A. E. Lange, E. Kreysa, S. E. McBride, P. L. Richards, E. E. Haller, “Improved fabrication techniques for infrared bolometers,” Int. J. Infrared Millimeter Waves 4, 689–706 (1983).
[CrossRef]

T. Timusk, P. L. Richards, “Near millimeter wave bandpass filters,” Appl. Opt. 20, 1355–1360 (1981).
[CrossRef] [PubMed]

Sakai, K.

Sato, S.

Smith, D. R.

Smoot, G. F.

M. L. Fischer, D. C. Alsop, E. S. Cheng, A. C. Clapp, D. A. Cottingham, J. O. Gundersen, T. C. Koch, E. Kreysa, P. R. Meinhold, A. E. Lange, P. M. Lubin, P. L. Richards, G. F. Smoot, “A bolometric millimeter-wave system for observations of anisotropy in the cosmic microwave background radiation on medium angular scales,” Astrophys. J. 388, 242–252 (1992).
[CrossRef]

Timusk, T.

Tompkins, S. S.

S. S. Tompkins, D. E. Bowles, J. G. Funk, J. A. Lavoie, T. W. Towell, “The development of composite materials for spacecraft precision reflector panels,” in Advances in Optical Structure Systems, J. Breakwell, V. L. Genberg, G. C. Krumweide, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1303, 512–523 (1990).

Towell, T. W.

S. S. Tompkins, D. E. Bowles, J. G. Funk, J. A. Lavoie, T. W. Towell, “The development of composite materials for spacecraft precision reflector panels,” in Advances in Optical Structure Systems, J. Breakwell, V. L. Genberg, G. C. Krumweide, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1303, 512–523 (1990).

Winston, R.

Wishnow, E.

Wolf, E.

M. A. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975), pp. 611–633.

Appl. Opt. (4)

Astrophys. J. (1)

M. L. Fischer, D. C. Alsop, E. S. Cheng, A. C. Clapp, D. A. Cottingham, J. O. Gundersen, T. C. Koch, E. Kreysa, P. R. Meinhold, A. E. Lange, P. M. Lubin, P. L. Richards, G. F. Smoot, “A bolometric millimeter-wave system for observations of anisotropy in the cosmic microwave background radiation on medium angular scales,” Astrophys. J. 388, 242–252 (1992).
[CrossRef]

Int. J. Infrared Millimeter Waves (2)

K. J. Leipoldt, T. Happich, E. Kreysa, H. -P. Gemünd, “Scattering matrix methods for far-infrared metal mesh filters,” Int. J. Infrared Millimeter Waves 12, 263–274 (1991).
[CrossRef]

A. E. Lange, E. Kreysa, S. E. McBride, P. L. Richards, E. E. Haller, “Improved fabrication techniques for infrared bolometers,” Int. J. Infrared Millimeter Waves 4, 689–706 (1983).
[CrossRef]

J. Opt. Soc. Am. (1)

Other (5)

Emerson & Cuming, Inc., AN-72, Woburn, Mass. 01888.

A. E. Lange, J. J. Bock, P. Mason, “The far-infrared explorer (FIRE),” in Infrared and Submilliter Space Missions in the Coming Decade, H. Thomson, M. Sauvage, P. Gallais, L. Vigroux, eds., Space Sci. Rev.74, 151–156 (1995).
[CrossRef]

S. S. Tompkins, D. E. Bowles, J. G. Funk, J. A. Lavoie, T. W. Towell, “The development of composite materials for spacecraft precision reflector panels,” in Advances in Optical Structure Systems, J. Breakwell, V. L. Genberg, G. C. Krumweide, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1303, 512–523 (1990).

W. F. Hoffmann, “Light-weight composite mirrors for space submillimeter astronomy,” in Space-Borne Sub-Millimeter Astronomy Mission, ESA SP 260, N. Longdon, ed. (European Space Agency Publications Division, Noordwijk, The Netherlands, 1986), pp. 231–238.

M. A. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975), pp. 611–633.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Calculated effective emissivity (∊ = 1 − R) of aluminum-coated composite mirrors plotted as a function of film thickness over skin depth t/δ for wavelengths λ = 1 cm, 3 mm, 1 mm, and 300 μm. We calculate the emissivity for an incident angle of 45°, averaging over polarization, assuming the electrical conductivity of bulk aluminum σ = 3.7 × 107 Ω−1 m−1. The skin depth depends on the electrical conductivity and the wavelength [see Eq. (2)]. For bulk aluminum, δ = 150 (λ/mm)1/2 mm. The emissivity can be extrapolated with high accuracy to other wavelengths and electrical conductivities by scaling the curves by ∊′ = ∊(λσ/λ′σ′)1/2.

Fig. 2
Fig. 2

Schematic of the emissivitometer. In the time-reversed sense, radiation detected by the bolometer passes through a cold filter stack and is collimated by a room-temperature back-to-back Winston horn with an apodizing flare. The radiation reflects off an off-axis ellipsoidal mirror, passes through a screen, is modulated by a chopper, passes through a panel, and is focused onto a reflective sample mounted on the panel. The radiation is reflected into a 77-K cold load alternately by the reflective chopper blade and by the sample. The cold load consists of foam Eccosorb submerged in a bath of liquid nitrogen.

Fig. 3
Fig. 3

Spectral response of the instrument.

Tables (1)

Tables Icon

Table 1 Measured Emissivities of Various Samples

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

= ( 16 π c 0 λ σ ) 1 / 2             ( mks ) ,
δ = ( λ π c σ μ ) 1 / 2             ( mks ) ,
G = S cal / ( T room - T load )             ( V / K ) ,
S = G [ s ( T s - T load ) - c h ( T c h - T load ) ] + S offset             ( V ) ,
Δ s = G - 1 ( S s - S ref T room - T load ) = Δ S S cal ,
s = Δ S / ( G Δ T s ) .

Metrics