Abstract

A simple optical dosimeter was used to measure the light intensity in rat liver and muscle in vivo with fibers positioned at different depths to investigate whether the light penetration changed during photodynamic therapy (PDT). The results were then correlated with measurements of the three optical-interaction coefficients μs, μa, and g for wavelengths in the range 500–800 nm for PDT-treated and nontreated rat liver and muscle tissue in vitro. A distinct increase in the absorption coefficient was seen immediately after treatment, in agreement with the decreasing light intensity observed during the treatment, as measured with the optical dosimeter. The collimated transmittance was measured with a narrow-beam setup, and an optical integrating sphere was used to measure the diffuse reflectance and total transmittance of the samples. The corresponding optical properties were obtained by spline interpolation of Monte Carlo-simulated data. To ensure that the measured values were correct, we performed calibration measurements with suspensions of polystyrene microspheres and ink.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Castellani, G. P. Pace, M. Concioli, “Photodynamic effect of haematoporphyrin on blood circulation,” J. Pathol. Bacteriol. 86, 99–102 (1963).
    [CrossRef] [PubMed]
  2. M. W. R. Reed, F. N. Miller, T. J. Wieman, M. T. Tseng, C. G. Pietsch, “The effect of photodynamic therapy on the microcirculation,” J. Surg. Res. 45, 452–459 (1988).
    [CrossRef] [PubMed]
  3. W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
    [CrossRef]
  4. S. Andersson-Engels, R. Berg, S. Svanberg, “Effects of optical constants on time-gated transillumination of tissue and tissue-like media,” J. Photochem. Photobiol. 16, 155–167 (1992).
    [CrossRef]
  5. M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of optical properties,” Appl. Opt. 28, 2331–2336 (1989).
    [CrossRef] [PubMed]
  6. M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue. I. Models of radiation transport and their application,” Lasers Med. Sci. 6, 155–168 (1991).
    [CrossRef]
  7. M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue. II. Optical properties of tissue and resulting fluence distributions,” Lasers Med. Sci. 6, 379–390 (1991).
    [CrossRef]
  8. P. Kubelka, “New contributions to the optics of intensely light-scattering materials. Part I.,” J. Opt. Soc. Am. 38, 448–457 (1948).
    [CrossRef] [PubMed]
  9. A. Ishimaru, “Diffusion of light in turbid material,” Appl. Opt. 28, 2210–2215 (1989).
    [CrossRef] [PubMed]
  10. S. A. Prahl, M. J. C. van Gemert, A. J. Welch, “Determining the optical properties of turbid media by using the adding–doubling method,” Appl. Opt. 32, 559–568 (1993).
    [CrossRef] [PubMed]
  11. R. van Hillegersberg, J. W. Pickering, M. Aalders, J. F. Beek, “Optical properties of rat liver and tumor at 633 nm and 1064 nm: Photofrin enhances scattering,” Lasers Surg. Med. 13, 31–39 (1993).
    [CrossRef] [PubMed]
  12. M. Keijzer, S. L. Jacques, S. A. Prahl, A. J. Welch, “Light distribution in artery tissue: Monte Carlo simulations for finite-diameter laser beams,” Lasers Surg. Med. 9, 148–154 (1989).
    [CrossRef] [PubMed]
  13. S. Andersson-Engels, Å. Elner, J. Johansson, S.-E. Karlsson, L. G. Salford, L.-G. Strömblad, K. Svanberg, S. Svanberg, “Clinical recordings of laser-induced fluorescence spectra for evaluation of tumour demarcation feasibility in selected clinical specialities,” Lasers Med. Sci. 6, 415–424 (1991).
    [CrossRef]
  14. L. Wang, S. L. Jacques, “Monte Carlo modeling of light transport in multi-layered tissues in standard C,” rep. (Laser Biology Research Laboratory, M. D. Anderson Cancer Center, University of Texas, 1515 Holcombe Boulevard, Houston, Tex., 1992).
  15. S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependence of He–Ne laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).
  16. J. R. Zijp, J. J. ten Bosch, “Pascal program to perform Mie calculations,” Opt. Eng. 32, 1691–1695 (1993).
    [CrossRef]
  17. R. Graaf, J. G. Aarnoudse, J. R. Zijp, P. M. A. Sloot, F. F. M. de Mul, J. Greve, M. H. Koelink, “Reduced light-scattering properties for mixtures of spherical particles: a simple approximation derived from Mie calculations,” Appl. Opt. 31, 1370–1376 (1992).
    [CrossRef]
  18. J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).
    [CrossRef] [PubMed]
  19. J. W. Pickering, C. J. M. Moes, H. J. C. M. Sterenborg, S. A. Prahl, M. J. C. van Gemert, “Two integrating spheres with an intervening scattering sample,” J. Opt. Soc. Am. A 9, 621–631 (1992).
    [CrossRef]
  20. D. G. Goebel, “Generalized integrating-sphere theory,” Appl. Opt. 6, 125–128 (1967).
    [CrossRef] [PubMed]
  21. R. Graaf, A. C. M. Dassel, M. H. Koelink, F. F. M. de Mul, J. G. Aarnoudse, W. G. Zijlstra, “Optical properties of human dermis in vitro and in vivo,” Appl. Opt. 32, 435–447 (1993).
    [CrossRef]
  22. J. H. Torres, A. J. Welch, I. Cilesiz, M. Motamedi, “Tissue optical property measurements: overestimation of absorption coefficient with spectrophotometric techniques,” Lasers Surg. Med. 14, 249–257 (1994).
    [CrossRef] [PubMed]
  23. A. Roggan, H. Albrecht, K. Dörschel, O. Minet, G. J. Müller, “Experimental setup and Monte Carlo model for the determination of optical tissue properties in the wavelength range 330–1100 nm,” in Laser Interaction with Hard and Soft Tissue II, G. P. Delacratez, L. O. Svaasand, R. W. Steiner, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 2323, 21–46 (1995).
  24. P. Parsa, S. L. Jacques, N. S. Nishioka, “Optical properties of rat liver between 350 and 2200 nm,” Appl. Opt. 28, 2325–2330 (1989).
    [CrossRef] [PubMed]
  25. S. Andersson-Engels, J. J. Johansson, D. Killander, E. Kjellén, M. Olivo, L. O. Svaasand, K. Svanberg, S. Svanberg, “Photodynamic therapy alone and in conjunction with near-infrared light-induced hyperthermia in human malignant tumors: a methodological case study,” in Laser Interaction with Tissue, M. W. Berns, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 908, 116–125 (1988).
  26. W. M. Star, H. P. A. Marijnissen, A. E. van den Berg-Blok, J. A. C. Versteeg, K. A. P. Franken, H. S. Reinhold, “Destruction of rat mammary tumor and normal tissue microcirculation by hematoporphyrin derivative photoradiation observed in vivo in sandwich observation chambers,” Cancer Res. 46, 2532–2540 (1986).
    [PubMed]
  27. E. J. Hudson, M. R. Stringer, F. Cairnduff, D. V. Ash, M. A. Smith, “Optical interaction coefficients of skin tumours obtained during superficial photodynamic therapy,” Lasers Med. Sci. 9, 99–103 (1994).
    [CrossRef]
  28. K. Berg, K. Madslien, J. Moan, “Retention and phototoxicity of tetra(4-sulfonatophenyl)porphine in cultivated human cells. The effect of the fractionation of light,” J. Photochem. Photobiol. 56, 177–183 (1992).
    [CrossRef]
  29. H. Anholt, J. Moan, “Fractionated treatment of CaD2 tumors in mice sensitized with aluminium phthalocyanine tetrasulfonate,” Cancer Lett. 61, 263–267 (1991).
    [CrossRef]

1994 (2)

J. H. Torres, A. J. Welch, I. Cilesiz, M. Motamedi, “Tissue optical property measurements: overestimation of absorption coefficient with spectrophotometric techniques,” Lasers Surg. Med. 14, 249–257 (1994).
[CrossRef] [PubMed]

E. J. Hudson, M. R. Stringer, F. Cairnduff, D. V. Ash, M. A. Smith, “Optical interaction coefficients of skin tumours obtained during superficial photodynamic therapy,” Lasers Med. Sci. 9, 99–103 (1994).
[CrossRef]

1993 (5)

1992 (4)

R. Graaf, J. G. Aarnoudse, J. R. Zijp, P. M. A. Sloot, F. F. M. de Mul, J. Greve, M. H. Koelink, “Reduced light-scattering properties for mixtures of spherical particles: a simple approximation derived from Mie calculations,” Appl. Opt. 31, 1370–1376 (1992).
[CrossRef]

S. Andersson-Engels, R. Berg, S. Svanberg, “Effects of optical constants on time-gated transillumination of tissue and tissue-like media,” J. Photochem. Photobiol. 16, 155–167 (1992).
[CrossRef]

K. Berg, K. Madslien, J. Moan, “Retention and phototoxicity of tetra(4-sulfonatophenyl)porphine in cultivated human cells. The effect of the fractionation of light,” J. Photochem. Photobiol. 56, 177–183 (1992).
[CrossRef]

J. W. Pickering, C. J. M. Moes, H. J. C. M. Sterenborg, S. A. Prahl, M. J. C. van Gemert, “Two integrating spheres with an intervening scattering sample,” J. Opt. Soc. Am. A 9, 621–631 (1992).
[CrossRef]

1991 (4)

H. Anholt, J. Moan, “Fractionated treatment of CaD2 tumors in mice sensitized with aluminium phthalocyanine tetrasulfonate,” Cancer Lett. 61, 263–267 (1991).
[CrossRef]

M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue. I. Models of radiation transport and their application,” Lasers Med. Sci. 6, 155–168 (1991).
[CrossRef]

M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue. II. Optical properties of tissue and resulting fluence distributions,” Lasers Med. Sci. 6, 379–390 (1991).
[CrossRef]

S. Andersson-Engels, Å. Elner, J. Johansson, S.-E. Karlsson, L. G. Salford, L.-G. Strömblad, K. Svanberg, S. Svanberg, “Clinical recordings of laser-induced fluorescence spectra for evaluation of tumour demarcation feasibility in selected clinical specialities,” Lasers Med. Sci. 6, 415–424 (1991).
[CrossRef]

1990 (1)

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

1989 (4)

1988 (1)

M. W. R. Reed, F. N. Miller, T. J. Wieman, M. T. Tseng, C. G. Pietsch, “The effect of photodynamic therapy on the microcirculation,” J. Surg. Res. 45, 452–459 (1988).
[CrossRef] [PubMed]

1987 (1)

S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependence of He–Ne laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).

1986 (1)

W. M. Star, H. P. A. Marijnissen, A. E. van den Berg-Blok, J. A. C. Versteeg, K. A. P. Franken, H. S. Reinhold, “Destruction of rat mammary tumor and normal tissue microcirculation by hematoporphyrin derivative photoradiation observed in vivo in sandwich observation chambers,” Cancer Res. 46, 2532–2540 (1986).
[PubMed]

1967 (1)

1963 (1)

A. Castellani, G. P. Pace, M. Concioli, “Photodynamic effect of haematoporphyrin on blood circulation,” J. Pathol. Bacteriol. 86, 99–102 (1963).
[CrossRef] [PubMed]

1948 (1)

Aalders, M.

R. van Hillegersberg, J. W. Pickering, M. Aalders, J. F. Beek, “Optical properties of rat liver and tumor at 633 nm and 1064 nm: Photofrin enhances scattering,” Lasers Surg. Med. 13, 31–39 (1993).
[CrossRef] [PubMed]

Aarnoudse, J. G.

Albrecht, H.

A. Roggan, H. Albrecht, K. Dörschel, O. Minet, G. J. Müller, “Experimental setup and Monte Carlo model for the determination of optical tissue properties in the wavelength range 330–1100 nm,” in Laser Interaction with Hard and Soft Tissue II, G. P. Delacratez, L. O. Svaasand, R. W. Steiner, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 2323, 21–46 (1995).

Alter, C. A.

S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependence of He–Ne laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).

Andersson-Engels, S.

S. Andersson-Engels, R. Berg, S. Svanberg, “Effects of optical constants on time-gated transillumination of tissue and tissue-like media,” J. Photochem. Photobiol. 16, 155–167 (1992).
[CrossRef]

S. Andersson-Engels, Å. Elner, J. Johansson, S.-E. Karlsson, L. G. Salford, L.-G. Strömblad, K. Svanberg, S. Svanberg, “Clinical recordings of laser-induced fluorescence spectra for evaluation of tumour demarcation feasibility in selected clinical specialities,” Lasers Med. Sci. 6, 415–424 (1991).
[CrossRef]

S. Andersson-Engels, J. J. Johansson, D. Killander, E. Kjellén, M. Olivo, L. O. Svaasand, K. Svanberg, S. Svanberg, “Photodynamic therapy alone and in conjunction with near-infrared light-induced hyperthermia in human malignant tumors: a methodological case study,” in Laser Interaction with Tissue, M. W. Berns, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 908, 116–125 (1988).

Anholt, H.

H. Anholt, J. Moan, “Fractionated treatment of CaD2 tumors in mice sensitized with aluminium phthalocyanine tetrasulfonate,” Cancer Lett. 61, 263–267 (1991).
[CrossRef]

Ash, D. V.

E. J. Hudson, M. R. Stringer, F. Cairnduff, D. V. Ash, M. A. Smith, “Optical interaction coefficients of skin tumours obtained during superficial photodynamic therapy,” Lasers Med. Sci. 9, 99–103 (1994).
[CrossRef]

Beek, J. F.

J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).
[CrossRef] [PubMed]

R. van Hillegersberg, J. W. Pickering, M. Aalders, J. F. Beek, “Optical properties of rat liver and tumor at 633 nm and 1064 nm: Photofrin enhances scattering,” Lasers Surg. Med. 13, 31–39 (1993).
[CrossRef] [PubMed]

Berg, K.

K. Berg, K. Madslien, J. Moan, “Retention and phototoxicity of tetra(4-sulfonatophenyl)porphine in cultivated human cells. The effect of the fractionation of light,” J. Photochem. Photobiol. 56, 177–183 (1992).
[CrossRef]

Berg, R.

S. Andersson-Engels, R. Berg, S. Svanberg, “Effects of optical constants on time-gated transillumination of tissue and tissue-like media,” J. Photochem. Photobiol. 16, 155–167 (1992).
[CrossRef]

Cairnduff, F.

E. J. Hudson, M. R. Stringer, F. Cairnduff, D. V. Ash, M. A. Smith, “Optical interaction coefficients of skin tumours obtained during superficial photodynamic therapy,” Lasers Med. Sci. 9, 99–103 (1994).
[CrossRef]

Castellani, A.

A. Castellani, G. P. Pace, M. Concioli, “Photodynamic effect of haematoporphyrin on blood circulation,” J. Pathol. Bacteriol. 86, 99–102 (1963).
[CrossRef] [PubMed]

Chance, B.

Cheong, W. F.

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Cilesiz, I.

J. H. Torres, A. J. Welch, I. Cilesiz, M. Motamedi, “Tissue optical property measurements: overestimation of absorption coefficient with spectrophotometric techniques,” Lasers Surg. Med. 14, 249–257 (1994).
[CrossRef] [PubMed]

Concioli, M.

A. Castellani, G. P. Pace, M. Concioli, “Photodynamic effect of haematoporphyrin on blood circulation,” J. Pathol. Bacteriol. 86, 99–102 (1963).
[CrossRef] [PubMed]

Dassel, A. C. M.

de Mul, F. F. M.

Dörschel, K.

A. Roggan, H. Albrecht, K. Dörschel, O. Minet, G. J. Müller, “Experimental setup and Monte Carlo model for the determination of optical tissue properties in the wavelength range 330–1100 nm,” in Laser Interaction with Hard and Soft Tissue II, G. P. Delacratez, L. O. Svaasand, R. W. Steiner, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 2323, 21–46 (1995).

Elner, Å.

S. Andersson-Engels, Å. Elner, J. Johansson, S.-E. Karlsson, L. G. Salford, L.-G. Strömblad, K. Svanberg, S. Svanberg, “Clinical recordings of laser-induced fluorescence spectra for evaluation of tumour demarcation feasibility in selected clinical specialities,” Lasers Med. Sci. 6, 415–424 (1991).
[CrossRef]

Franken, K. A. P.

W. M. Star, H. P. A. Marijnissen, A. E. van den Berg-Blok, J. A. C. Versteeg, K. A. P. Franken, H. S. Reinhold, “Destruction of rat mammary tumor and normal tissue microcirculation by hematoporphyrin derivative photoradiation observed in vivo in sandwich observation chambers,” Cancer Res. 46, 2532–2540 (1986).
[PubMed]

Goebel, D. G.

Graaf, R.

Greve, J.

Hudson, E. J.

E. J. Hudson, M. R. Stringer, F. Cairnduff, D. V. Ash, M. A. Smith, “Optical interaction coefficients of skin tumours obtained during superficial photodynamic therapy,” Lasers Med. Sci. 9, 99–103 (1994).
[CrossRef]

Ishimaru, A.

Jacques, S. L.

M. Keijzer, S. L. Jacques, S. A. Prahl, A. J. Welch, “Light distribution in artery tissue: Monte Carlo simulations for finite-diameter laser beams,” Lasers Surg. Med. 9, 148–154 (1989).
[CrossRef] [PubMed]

P. Parsa, S. L. Jacques, N. S. Nishioka, “Optical properties of rat liver between 350 and 2200 nm,” Appl. Opt. 28, 2325–2330 (1989).
[CrossRef] [PubMed]

S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependence of He–Ne laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).

L. Wang, S. L. Jacques, “Monte Carlo modeling of light transport in multi-layered tissues in standard C,” rep. (Laser Biology Research Laboratory, M. D. Anderson Cancer Center, University of Texas, 1515 Holcombe Boulevard, Houston, Tex., 1992).

Johansson, J.

S. Andersson-Engels, Å. Elner, J. Johansson, S.-E. Karlsson, L. G. Salford, L.-G. Strömblad, K. Svanberg, S. Svanberg, “Clinical recordings of laser-induced fluorescence spectra for evaluation of tumour demarcation feasibility in selected clinical specialities,” Lasers Med. Sci. 6, 415–424 (1991).
[CrossRef]

Johansson, J. J.

S. Andersson-Engels, J. J. Johansson, D. Killander, E. Kjellén, M. Olivo, L. O. Svaasand, K. Svanberg, S. Svanberg, “Photodynamic therapy alone and in conjunction with near-infrared light-induced hyperthermia in human malignant tumors: a methodological case study,” in Laser Interaction with Tissue, M. W. Berns, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 908, 116–125 (1988).

Karlsson, S.-E.

S. Andersson-Engels, Å. Elner, J. Johansson, S.-E. Karlsson, L. G. Salford, L.-G. Strömblad, K. Svanberg, S. Svanberg, “Clinical recordings of laser-induced fluorescence spectra for evaluation of tumour demarcation feasibility in selected clinical specialities,” Lasers Med. Sci. 6, 415–424 (1991).
[CrossRef]

Keijzer, M.

M. Keijzer, S. L. Jacques, S. A. Prahl, A. J. Welch, “Light distribution in artery tissue: Monte Carlo simulations for finite-diameter laser beams,” Lasers Surg. Med. 9, 148–154 (1989).
[CrossRef] [PubMed]

Killander, D.

S. Andersson-Engels, J. J. Johansson, D. Killander, E. Kjellén, M. Olivo, L. O. Svaasand, K. Svanberg, S. Svanberg, “Photodynamic therapy alone and in conjunction with near-infrared light-induced hyperthermia in human malignant tumors: a methodological case study,” in Laser Interaction with Tissue, M. W. Berns, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 908, 116–125 (1988).

Kjellén, E.

S. Andersson-Engels, J. J. Johansson, D. Killander, E. Kjellén, M. Olivo, L. O. Svaasand, K. Svanberg, S. Svanberg, “Photodynamic therapy alone and in conjunction with near-infrared light-induced hyperthermia in human malignant tumors: a methodological case study,” in Laser Interaction with Tissue, M. W. Berns, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 908, 116–125 (1988).

Koelink, M. H.

Kubelka, P.

Madslien, K.

K. Berg, K. Madslien, J. Moan, “Retention and phototoxicity of tetra(4-sulfonatophenyl)porphine in cultivated human cells. The effect of the fractionation of light,” J. Photochem. Photobiol. 56, 177–183 (1992).
[CrossRef]

Marijnissen, H. P. A.

W. M. Star, H. P. A. Marijnissen, A. E. van den Berg-Blok, J. A. C. Versteeg, K. A. P. Franken, H. S. Reinhold, “Destruction of rat mammary tumor and normal tissue microcirculation by hematoporphyrin derivative photoradiation observed in vivo in sandwich observation chambers,” Cancer Res. 46, 2532–2540 (1986).
[PubMed]

Miller, F. N.

M. W. R. Reed, F. N. Miller, T. J. Wieman, M. T. Tseng, C. G. Pietsch, “The effect of photodynamic therapy on the microcirculation,” J. Surg. Res. 45, 452–459 (1988).
[CrossRef] [PubMed]

Minet, O.

A. Roggan, H. Albrecht, K. Dörschel, O. Minet, G. J. Müller, “Experimental setup and Monte Carlo model for the determination of optical tissue properties in the wavelength range 330–1100 nm,” in Laser Interaction with Hard and Soft Tissue II, G. P. Delacratez, L. O. Svaasand, R. W. Steiner, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 2323, 21–46 (1995).

Moan, J.

K. Berg, K. Madslien, J. Moan, “Retention and phototoxicity of tetra(4-sulfonatophenyl)porphine in cultivated human cells. The effect of the fractionation of light,” J. Photochem. Photobiol. 56, 177–183 (1992).
[CrossRef]

H. Anholt, J. Moan, “Fractionated treatment of CaD2 tumors in mice sensitized with aluminium phthalocyanine tetrasulfonate,” Cancer Lett. 61, 263–267 (1991).
[CrossRef]

Moes, C. J. M.

Motamedi, M.

J. H. Torres, A. J. Welch, I. Cilesiz, M. Motamedi, “Tissue optical property measurements: overestimation of absorption coefficient with spectrophotometric techniques,” Lasers Surg. Med. 14, 249–257 (1994).
[CrossRef] [PubMed]

Müller, G. J.

A. Roggan, H. Albrecht, K. Dörschel, O. Minet, G. J. Müller, “Experimental setup and Monte Carlo model for the determination of optical tissue properties in the wavelength range 330–1100 nm,” in Laser Interaction with Hard and Soft Tissue II, G. P. Delacratez, L. O. Svaasand, R. W. Steiner, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 2323, 21–46 (1995).

Nishioka, N. S.

Olivo, M.

S. Andersson-Engels, J. J. Johansson, D. Killander, E. Kjellén, M. Olivo, L. O. Svaasand, K. Svanberg, S. Svanberg, “Photodynamic therapy alone and in conjunction with near-infrared light-induced hyperthermia in human malignant tumors: a methodological case study,” in Laser Interaction with Tissue, M. W. Berns, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 908, 116–125 (1988).

Pace, G. P.

A. Castellani, G. P. Pace, M. Concioli, “Photodynamic effect of haematoporphyrin on blood circulation,” J. Pathol. Bacteriol. 86, 99–102 (1963).
[CrossRef] [PubMed]

Parsa, P.

Patterson, M. S.

M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue. II. Optical properties of tissue and resulting fluence distributions,” Lasers Med. Sci. 6, 379–390 (1991).
[CrossRef]

M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue. I. Models of radiation transport and their application,” Lasers Med. Sci. 6, 155–168 (1991).
[CrossRef]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

Pickering, J. W.

Pietsch, C. G.

M. W. R. Reed, F. N. Miller, T. J. Wieman, M. T. Tseng, C. G. Pietsch, “The effect of photodynamic therapy on the microcirculation,” J. Surg. Res. 45, 452–459 (1988).
[CrossRef] [PubMed]

Prahl, S. A.

S. A. Prahl, M. J. C. van Gemert, A. J. Welch, “Determining the optical properties of turbid media by using the adding–doubling method,” Appl. Opt. 32, 559–568 (1993).
[CrossRef] [PubMed]

J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).
[CrossRef] [PubMed]

J. W. Pickering, C. J. M. Moes, H. J. C. M. Sterenborg, S. A. Prahl, M. J. C. van Gemert, “Two integrating spheres with an intervening scattering sample,” J. Opt. Soc. Am. A 9, 621–631 (1992).
[CrossRef]

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

M. Keijzer, S. L. Jacques, S. A. Prahl, A. J. Welch, “Light distribution in artery tissue: Monte Carlo simulations for finite-diameter laser beams,” Lasers Surg. Med. 9, 148–154 (1989).
[CrossRef] [PubMed]

S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependence of He–Ne laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).

Reed, M. W. R.

M. W. R. Reed, F. N. Miller, T. J. Wieman, M. T. Tseng, C. G. Pietsch, “The effect of photodynamic therapy on the microcirculation,” J. Surg. Res. 45, 452–459 (1988).
[CrossRef] [PubMed]

Reinhold, H. S.

W. M. Star, H. P. A. Marijnissen, A. E. van den Berg-Blok, J. A. C. Versteeg, K. A. P. Franken, H. S. Reinhold, “Destruction of rat mammary tumor and normal tissue microcirculation by hematoporphyrin derivative photoradiation observed in vivo in sandwich observation chambers,” Cancer Res. 46, 2532–2540 (1986).
[PubMed]

Roggan, A.

A. Roggan, H. Albrecht, K. Dörschel, O. Minet, G. J. Müller, “Experimental setup and Monte Carlo model for the determination of optical tissue properties in the wavelength range 330–1100 nm,” in Laser Interaction with Hard and Soft Tissue II, G. P. Delacratez, L. O. Svaasand, R. W. Steiner, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 2323, 21–46 (1995).

Salford, L. G.

S. Andersson-Engels, Å. Elner, J. Johansson, S.-E. Karlsson, L. G. Salford, L.-G. Strömblad, K. Svanberg, S. Svanberg, “Clinical recordings of laser-induced fluorescence spectra for evaluation of tumour demarcation feasibility in selected clinical specialities,” Lasers Med. Sci. 6, 415–424 (1991).
[CrossRef]

Sloot, P. M. A.

Smith, M. A.

E. J. Hudson, M. R. Stringer, F. Cairnduff, D. V. Ash, M. A. Smith, “Optical interaction coefficients of skin tumours obtained during superficial photodynamic therapy,” Lasers Med. Sci. 9, 99–103 (1994).
[CrossRef]

Star, W. M.

W. M. Star, H. P. A. Marijnissen, A. E. van den Berg-Blok, J. A. C. Versteeg, K. A. P. Franken, H. S. Reinhold, “Destruction of rat mammary tumor and normal tissue microcirculation by hematoporphyrin derivative photoradiation observed in vivo in sandwich observation chambers,” Cancer Res. 46, 2532–2540 (1986).
[PubMed]

Sterenborg, H. J. C. M.

Stringer, M. R.

E. J. Hudson, M. R. Stringer, F. Cairnduff, D. V. Ash, M. A. Smith, “Optical interaction coefficients of skin tumours obtained during superficial photodynamic therapy,” Lasers Med. Sci. 9, 99–103 (1994).
[CrossRef]

Strömblad, L.-G.

S. Andersson-Engels, Å. Elner, J. Johansson, S.-E. Karlsson, L. G. Salford, L.-G. Strömblad, K. Svanberg, S. Svanberg, “Clinical recordings of laser-induced fluorescence spectra for evaluation of tumour demarcation feasibility in selected clinical specialities,” Lasers Med. Sci. 6, 415–424 (1991).
[CrossRef]

Svaasand, L. O.

S. Andersson-Engels, J. J. Johansson, D. Killander, E. Kjellén, M. Olivo, L. O. Svaasand, K. Svanberg, S. Svanberg, “Photodynamic therapy alone and in conjunction with near-infrared light-induced hyperthermia in human malignant tumors: a methodological case study,” in Laser Interaction with Tissue, M. W. Berns, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 908, 116–125 (1988).

Svanberg, K.

S. Andersson-Engels, Å. Elner, J. Johansson, S.-E. Karlsson, L. G. Salford, L.-G. Strömblad, K. Svanberg, S. Svanberg, “Clinical recordings of laser-induced fluorescence spectra for evaluation of tumour demarcation feasibility in selected clinical specialities,” Lasers Med. Sci. 6, 415–424 (1991).
[CrossRef]

S. Andersson-Engels, J. J. Johansson, D. Killander, E. Kjellén, M. Olivo, L. O. Svaasand, K. Svanberg, S. Svanberg, “Photodynamic therapy alone and in conjunction with near-infrared light-induced hyperthermia in human malignant tumors: a methodological case study,” in Laser Interaction with Tissue, M. W. Berns, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 908, 116–125 (1988).

Svanberg, S.

S. Andersson-Engels, R. Berg, S. Svanberg, “Effects of optical constants on time-gated transillumination of tissue and tissue-like media,” J. Photochem. Photobiol. 16, 155–167 (1992).
[CrossRef]

S. Andersson-Engels, Å. Elner, J. Johansson, S.-E. Karlsson, L. G. Salford, L.-G. Strömblad, K. Svanberg, S. Svanberg, “Clinical recordings of laser-induced fluorescence spectra for evaluation of tumour demarcation feasibility in selected clinical specialities,” Lasers Med. Sci. 6, 415–424 (1991).
[CrossRef]

S. Andersson-Engels, J. J. Johansson, D. Killander, E. Kjellén, M. Olivo, L. O. Svaasand, K. Svanberg, S. Svanberg, “Photodynamic therapy alone and in conjunction with near-infrared light-induced hyperthermia in human malignant tumors: a methodological case study,” in Laser Interaction with Tissue, M. W. Berns, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 908, 116–125 (1988).

ten Bosch, J. J.

J. R. Zijp, J. J. ten Bosch, “Pascal program to perform Mie calculations,” Opt. Eng. 32, 1691–1695 (1993).
[CrossRef]

Torres, J. H.

J. H. Torres, A. J. Welch, I. Cilesiz, M. Motamedi, “Tissue optical property measurements: overestimation of absorption coefficient with spectrophotometric techniques,” Lasers Surg. Med. 14, 249–257 (1994).
[CrossRef] [PubMed]

Tseng, M. T.

M. W. R. Reed, F. N. Miller, T. J. Wieman, M. T. Tseng, C. G. Pietsch, “The effect of photodynamic therapy on the microcirculation,” J. Surg. Res. 45, 452–459 (1988).
[CrossRef] [PubMed]

van den Berg-Blok, A. E.

W. M. Star, H. P. A. Marijnissen, A. E. van den Berg-Blok, J. A. C. Versteeg, K. A. P. Franken, H. S. Reinhold, “Destruction of rat mammary tumor and normal tissue microcirculation by hematoporphyrin derivative photoradiation observed in vivo in sandwich observation chambers,” Cancer Res. 46, 2532–2540 (1986).
[PubMed]

van Gemert, M. J. C.

van Hillegersberg, R.

R. van Hillegersberg, J. W. Pickering, M. Aalders, J. F. Beek, “Optical properties of rat liver and tumor at 633 nm and 1064 nm: Photofrin enhances scattering,” Lasers Surg. Med. 13, 31–39 (1993).
[CrossRef] [PubMed]

van Wieringen, N.

Versteeg, J. A. C.

W. M. Star, H. P. A. Marijnissen, A. E. van den Berg-Blok, J. A. C. Versteeg, K. A. P. Franken, H. S. Reinhold, “Destruction of rat mammary tumor and normal tissue microcirculation by hematoporphyrin derivative photoradiation observed in vivo in sandwich observation chambers,” Cancer Res. 46, 2532–2540 (1986).
[PubMed]

Wang, L.

L. Wang, S. L. Jacques, “Monte Carlo modeling of light transport in multi-layered tissues in standard C,” rep. (Laser Biology Research Laboratory, M. D. Anderson Cancer Center, University of Texas, 1515 Holcombe Boulevard, Houston, Tex., 1992).

Welch, A. J.

J. H. Torres, A. J. Welch, I. Cilesiz, M. Motamedi, “Tissue optical property measurements: overestimation of absorption coefficient with spectrophotometric techniques,” Lasers Surg. Med. 14, 249–257 (1994).
[CrossRef] [PubMed]

S. A. Prahl, M. J. C. van Gemert, A. J. Welch, “Determining the optical properties of turbid media by using the adding–doubling method,” Appl. Opt. 32, 559–568 (1993).
[CrossRef] [PubMed]

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

M. Keijzer, S. L. Jacques, S. A. Prahl, A. J. Welch, “Light distribution in artery tissue: Monte Carlo simulations for finite-diameter laser beams,” Lasers Surg. Med. 9, 148–154 (1989).
[CrossRef] [PubMed]

Wieman, T. J.

M. W. R. Reed, F. N. Miller, T. J. Wieman, M. T. Tseng, C. G. Pietsch, “The effect of photodynamic therapy on the microcirculation,” J. Surg. Res. 45, 452–459 (1988).
[CrossRef] [PubMed]

Wilson, B. C.

M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue. I. Models of radiation transport and their application,” Lasers Med. Sci. 6, 155–168 (1991).
[CrossRef]

M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue. II. Optical properties of tissue and resulting fluence distributions,” Lasers Med. Sci. 6, 379–390 (1991).
[CrossRef]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

Wyman, D. R.

M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue. II. Optical properties of tissue and resulting fluence distributions,” Lasers Med. Sci. 6, 379–390 (1991).
[CrossRef]

M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue. I. Models of radiation transport and their application,” Lasers Med. Sci. 6, 155–168 (1991).
[CrossRef]

Zijlstra, W. G.

Zijp, J. R.

Appl. Opt. (8)

D. G. Goebel, “Generalized integrating-sphere theory,” Appl. Opt. 6, 125–128 (1967).
[CrossRef] [PubMed]

A. Ishimaru, “Diffusion of light in turbid material,” Appl. Opt. 28, 2210–2215 (1989).
[CrossRef] [PubMed]

P. Parsa, S. L. Jacques, N. S. Nishioka, “Optical properties of rat liver between 350 and 2200 nm,” Appl. Opt. 28, 2325–2330 (1989).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

R. Graaf, J. G. Aarnoudse, J. R. Zijp, P. M. A. Sloot, F. F. M. de Mul, J. Greve, M. H. Koelink, “Reduced light-scattering properties for mixtures of spherical particles: a simple approximation derived from Mie calculations,” Appl. Opt. 31, 1370–1376 (1992).
[CrossRef]

J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).
[CrossRef] [PubMed]

R. Graaf, A. C. M. Dassel, M. H. Koelink, F. F. M. de Mul, J. G. Aarnoudse, W. G. Zijlstra, “Optical properties of human dermis in vitro and in vivo,” Appl. Opt. 32, 435–447 (1993).
[CrossRef]

S. A. Prahl, M. J. C. van Gemert, A. J. Welch, “Determining the optical properties of turbid media by using the adding–doubling method,” Appl. Opt. 32, 559–568 (1993).
[CrossRef] [PubMed]

Cancer Lett. (1)

H. Anholt, J. Moan, “Fractionated treatment of CaD2 tumors in mice sensitized with aluminium phthalocyanine tetrasulfonate,” Cancer Lett. 61, 263–267 (1991).
[CrossRef]

Cancer Res. (1)

W. M. Star, H. P. A. Marijnissen, A. E. van den Berg-Blok, J. A. C. Versteeg, K. A. P. Franken, H. S. Reinhold, “Destruction of rat mammary tumor and normal tissue microcirculation by hematoporphyrin derivative photoradiation observed in vivo in sandwich observation chambers,” Cancer Res. 46, 2532–2540 (1986).
[PubMed]

IEEE J. Quantum Electron. (1)

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Pathol. Bacteriol. (1)

A. Castellani, G. P. Pace, M. Concioli, “Photodynamic effect of haematoporphyrin on blood circulation,” J. Pathol. Bacteriol. 86, 99–102 (1963).
[CrossRef] [PubMed]

J. Photochem. Photobiol. (2)

S. Andersson-Engels, R. Berg, S. Svanberg, “Effects of optical constants on time-gated transillumination of tissue and tissue-like media,” J. Photochem. Photobiol. 16, 155–167 (1992).
[CrossRef]

K. Berg, K. Madslien, J. Moan, “Retention and phototoxicity of tetra(4-sulfonatophenyl)porphine in cultivated human cells. The effect of the fractionation of light,” J. Photochem. Photobiol. 56, 177–183 (1992).
[CrossRef]

J. Surg. Res. (1)

M. W. R. Reed, F. N. Miller, T. J. Wieman, M. T. Tseng, C. G. Pietsch, “The effect of photodynamic therapy on the microcirculation,” J. Surg. Res. 45, 452–459 (1988).
[CrossRef] [PubMed]

Lasers Life Sci. (1)

S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependence of He–Ne laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).

Lasers Med. Sci. (4)

E. J. Hudson, M. R. Stringer, F. Cairnduff, D. V. Ash, M. A. Smith, “Optical interaction coefficients of skin tumours obtained during superficial photodynamic therapy,” Lasers Med. Sci. 9, 99–103 (1994).
[CrossRef]

S. Andersson-Engels, Å. Elner, J. Johansson, S.-E. Karlsson, L. G. Salford, L.-G. Strömblad, K. Svanberg, S. Svanberg, “Clinical recordings of laser-induced fluorescence spectra for evaluation of tumour demarcation feasibility in selected clinical specialities,” Lasers Med. Sci. 6, 415–424 (1991).
[CrossRef]

M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue. I. Models of radiation transport and their application,” Lasers Med. Sci. 6, 155–168 (1991).
[CrossRef]

M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue. II. Optical properties of tissue and resulting fluence distributions,” Lasers Med. Sci. 6, 379–390 (1991).
[CrossRef]

Lasers Surg. Med. (3)

R. van Hillegersberg, J. W. Pickering, M. Aalders, J. F. Beek, “Optical properties of rat liver and tumor at 633 nm and 1064 nm: Photofrin enhances scattering,” Lasers Surg. Med. 13, 31–39 (1993).
[CrossRef] [PubMed]

M. Keijzer, S. L. Jacques, S. A. Prahl, A. J. Welch, “Light distribution in artery tissue: Monte Carlo simulations for finite-diameter laser beams,” Lasers Surg. Med. 9, 148–154 (1989).
[CrossRef] [PubMed]

J. H. Torres, A. J. Welch, I. Cilesiz, M. Motamedi, “Tissue optical property measurements: overestimation of absorption coefficient with spectrophotometric techniques,” Lasers Surg. Med. 14, 249–257 (1994).
[CrossRef] [PubMed]

Opt. Eng. (1)

J. R. Zijp, J. J. ten Bosch, “Pascal program to perform Mie calculations,” Opt. Eng. 32, 1691–1695 (1993).
[CrossRef]

Other (3)

A. Roggan, H. Albrecht, K. Dörschel, O. Minet, G. J. Müller, “Experimental setup and Monte Carlo model for the determination of optical tissue properties in the wavelength range 330–1100 nm,” in Laser Interaction with Hard and Soft Tissue II, G. P. Delacratez, L. O. Svaasand, R. W. Steiner, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 2323, 21–46 (1995).

S. Andersson-Engels, J. J. Johansson, D. Killander, E. Kjellén, M. Olivo, L. O. Svaasand, K. Svanberg, S. Svanberg, “Photodynamic therapy alone and in conjunction with near-infrared light-induced hyperthermia in human malignant tumors: a methodological case study,” in Laser Interaction with Tissue, M. W. Berns, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 908, 116–125 (1988).

L. Wang, S. L. Jacques, “Monte Carlo modeling of light transport in multi-layered tissues in standard C,” rep. (Laser Biology Research Laboratory, M. D. Anderson Cancer Center, University of Texas, 1515 Holcombe Boulevard, Houston, Tex., 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic outline of the setup used to measure the light-fluence rate at two depths during PDT. The optical fibers to detect the laser light were placed at depths of 1 and 3 mm in the tissue sample depicted at the lower left corner in the figure. The collected light was measured with photodiodes connected to a voltmeter. A beam splitter was placed in the laser beam to permit compensation for laser-intensity fluctuations by partly deflecting the beam to a photodiode connected to the voltmeter.

Fig. 2
Fig. 2

Setup for the integrating-sphere and collimated-beam measurements of tissue optical properties. The total transmittance, the diffuse reflectance, and the collimated transmittance were measured by our placing the sample at positions 1, 2, and 3, respectively.

Fig. 3
Fig. 3

Plot of the light-fluence rate as measured with the setup shown in Fig. 1: The light fluence, collected by an optical-fiber tip at a tissue depth of 1-mm, is plotted versus time during (from 0–15 min) and after (from 15 min onward) PDT. The peaks result from switching the light on for a short while every fifth minute after the completed treatment.

Fig. 4
Fig. 4

Optical properties of polystyrene sphere–ink suspensions at 650 nm for two different sphere diameters as measured with the integrating-sphere setup: 0.806 μm (upper plots) and 1.53 μm (lower plots) are represented by the open circles. Those results are compared with the reference values (solid squares) for g and μ s (calculated with the Mie scattering theory) and μ a (measured with a spectrophotometer).

Fig. 5
Fig. 5

Derived mean values and standard deviations of the dimensionless fluorescence ratio for the three tissue types: muscle tissue, median liver lobe, and left-lateral liver lobe. The photosensitizers used were ALA (30 mg/kg b.w.) and Photofrin (15 mg/kg b.w.).

Fig. 6
Fig. 6

The measured optical properties of PDT-treated and the surrounding nontreated tissue samples from an ALA-injected rat for (a) liver and (b) muscle.

Fig. 7
Fig. 7

Relative changes in the optical properties resulting from PDT as measured for PDT-irradiated and the surrounding nonirradiated tissues. Measurements are from ALA-injected and noninjected rats for (a) liver and (b) muscle tissue samples.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

μ t = μ s + μ a ,
τ = d μ t .
T = I T / I ref ,
R = R BS ( I R / I ref ) ,
μ t = - ln [ ( I / I 0 ) ( T ND ) ] / d ,
P ( cos θ ) = ( 1 - g 2 ) / [ 2 ( 1 + g 2 - 2 g cos θ ) 3 / 2 ] ,
Δ g = 100 [ g ( treated ) - g ( nontreated ) ] / g ( nontreated ) .

Metrics