Abstract

We present a comprehensive solution to the classical problem of electromagnetic scattering by aggregates of an arbitrary number of arbitrarily configured spheres that are isotropic and homogeneous but may be of different size and composition. The profile of incident electromagnetic waves is arbitrary. The analysis is based on the framework of the Mie theory for a single sphere and the existing addition theorems for spherical vector wave functions. The classic Mie theory is generalized. Applying the extended Mie theory to all the spherical constituents in an aggregate simultaneously leads to a set of coupled linear equations in the unknown interactive coefficients. We propose an asymptotic iteration technique to solve for these coefficients. The total scattered field of the entire ensemble is constructed with the interactive scattering coefficients by the use of the translational addition theorem a second time. Rigorous analytical expressions are derived for the cross sections in a general case and for all the elements of the amplitude-scattering matrix in a special case of a plane-incident wave propagating along the z axis. As an illustration, we present some of our preliminary numerical results and compare them with previously published laboratory scattering measurements.

© 1995 Optical Society of America

Full Article  |  PDF Article

Errata

Yu-lin Xu, "Electromagnetic scattering by an aggregate of spheres: errata," Appl. Opt. 40, 5508-5508 (2001)
https://www.osapublishing.org/ao/abstract.cfm?uri=ao-40-30-5508

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (98)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription