Abstract

A detailed radiative transfer calculation has been carried out to estimate the effects of rotational Raman scattering (RRS) on satellite measurements of backscattered ultraviolet radiation. Raman-scattered light is shifted in frequency from the incident light, which causes filling in of solar Fraunhofer lines in the observed backscattered spectrum (also known as the Ring effect). The magnitude of the rotational Raman scattering filling in is a function of wavelength, solar zenith angle, surface reflectance, surface pressure, and instrument spectral resolution. The filling in predicted by our model is found to be in agreement with observations from the Shuttle Solar Backscatter Ultraviolet Radiometer and the Nimbus-7 Solar Backscatter Ultraviolet Radiometer.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Grainger, J. Ring, “Anomalous Fraunhofer line profiles,” Nature 193, 762 (1962).
    [CrossRef]
  2. A. W. Harrison, D. J. W. Kendall, “Fraunhofer line filling in (3855–4455 A),” Can. J. Phys. 52, 940–944 (1974).
  3. A. W. Harrison, “Diurnal variation of the Ring effect,” Can. J. Phys. 54, 1000–1005 (1975).
    [CrossRef]
  4. F. E. Barmore, “The filling-in of Fraunhofer lines in the day sky,” J. Atmos. Sci. 32, 1489–1493 (1975).
    [CrossRef]
  5. L. Wallace, “Rayleigh and Raman scattering by H2 in a planetary atmosphere,” Astrophys. J. 176, 249–257 (1972).
    [CrossRef]
  6. R. T. Brinkman, “Rotational Raman scattering in planetary atmospheres,” Astrophys. J. 154, 1087–1093 (1968).
    [CrossRef]
  7. W. D. Cochran, L. Trafton, W. Macy, J. H. Woodman, “Raman scattering in the Jovian atmosphere,” Astrophys. J. 247, 734–740 (1981).
    [CrossRef]
  8. M. J. Price, “On probing the outer planets with the Raman effect,” Rev. Geophys. Space Phys. 15, 227–234 (1977).
    [CrossRef]
  9. G. W. Kattawar, A. T. Young, T. J. Humphreys, “Inelastic scattering in planetary atmospheres. I. The Ring effect, without aerosols,” Astrophys. J. 243, 1049–1057 (1981).
    [CrossRef]
  10. S. Solomon, A. L. Schmeltekopf, R. W. Sanders, “On the interpretation of zenith sky absorption measurements,” J. Geophys. Res. 92, 8311–8319 (1987).
    [CrossRef]
  11. H. Park, D. F. Heath, C. L. Mateer, “Possible application of the Fraunhofer line filling-in effect to cloud height measurements,” in Meteorological Optics, 1986 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1986), pp. 70–81.
  12. A. T. Young, “Rayleigh scattering,” Appl. Opt. 20, 533–535 (1981).
    [CrossRef] [PubMed]
  13. D. R. Bates, “Rayleigh scattering by air,” Planet. Space Sci. 32, 785–790 (1984).
    [CrossRef]
  14. C. M. Penney, R. L. St. Peters, M. Lapp, “Absolute rotational Raman cross sections for N2, O2, and CO2,” J. Opt. Soc. Am. 64, 712–716 (1974).
    [CrossRef]
  15. G. J. Rottman, T. N. Woods, T. P. Sparn, “Solar-stellar irradiance comparison experiment 1. 1. Instrument design and operation,” J. Geophys. Res. 98, 10667–10677 (1993).
    [CrossRef]
  16. T. N. Woods, G. J. Rottman, G. J. Ucker, “Solar-stellar irradiance comparison experiment 1. 2. Instrument calibrations,” J. Geophys. Res. 98, 10679–10694 (1993).
    [CrossRef]
  17. J. V. Dave, “Multiple scattering in a non-homogeneous, Rayleigh atmosphere,” J. Atmos. Sci. 22, 273–279 (1964).
    [CrossRef]
  18. J. J. DeLuisi, C. L. Mateer, “On the application of the optimum statistical inversion technique to the evaluation of Umkehr observations,” J. Appl. Meteorol. 10, 328–334 (1971).
    [CrossRef]
  19. T. R. Caudill, “Accuracy of the Total Ozone Mapping Spectrometer algorithm at polar latitudes,” Ph.D. dissertation (University of Arizona, Tucson, Ariz., 1994).
  20. R. D. McPeters, “Climatology of nitric oxide in the upper stratosphere, mesosphere, and thermosphere: 1797 through 1986,” J. Geophys. Res. 94, 3461–3472 (1989).
    [CrossRef]
  21. E. Hilsenrath, R. P. Cebula, R. Caffrey, S. Hynes, “Implications of space shuttle flight on the calibration of instruments observing atmospheric ozone and the solar irradiance,” Metrologia 28, 301–304 (1991).
    [CrossRef]
  22. R. P. Cebula, E. Hilsenrath, B. Guenther, “Calibration of the Shuttle borne Solar Backscatter Ultraviolet Spectrometer,” in Optical Radiation Measurements II, J. M. Palmer, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1109, 205–218 (1989).
  23. G. D. Greenblatt, J. J. Orlando, J. B. Burkholder, A. R. Ravishankara, “Absorption measurements of oxygen between 330 and 1140 nm,” J. Geophys. Res. 95, 18577–18582 (1990).
    [CrossRef]
  24. P. K. Bhartia, J. Herman, R. D. McPeters, O. Torres, “Effect of Mount Pinatubo aerosols on total ozone measurements from backscatter ultraviolet (BUV) experiments,” J. Geophys. Res. 98, 18547–18554 (1993).
    [CrossRef]
  25. J. Joiner, P. K. Bhartia, “Determination of cloud pressures using rotational Raman scattering in satellite backscatter ultraviolet measurements,” Submitted to J. Geophys. Res.

1993 (3)

G. J. Rottman, T. N. Woods, T. P. Sparn, “Solar-stellar irradiance comparison experiment 1. 1. Instrument design and operation,” J. Geophys. Res. 98, 10667–10677 (1993).
[CrossRef]

T. N. Woods, G. J. Rottman, G. J. Ucker, “Solar-stellar irradiance comparison experiment 1. 2. Instrument calibrations,” J. Geophys. Res. 98, 10679–10694 (1993).
[CrossRef]

P. K. Bhartia, J. Herman, R. D. McPeters, O. Torres, “Effect of Mount Pinatubo aerosols on total ozone measurements from backscatter ultraviolet (BUV) experiments,” J. Geophys. Res. 98, 18547–18554 (1993).
[CrossRef]

1991 (1)

E. Hilsenrath, R. P. Cebula, R. Caffrey, S. Hynes, “Implications of space shuttle flight on the calibration of instruments observing atmospheric ozone and the solar irradiance,” Metrologia 28, 301–304 (1991).
[CrossRef]

1990 (1)

G. D. Greenblatt, J. J. Orlando, J. B. Burkholder, A. R. Ravishankara, “Absorption measurements of oxygen between 330 and 1140 nm,” J. Geophys. Res. 95, 18577–18582 (1990).
[CrossRef]

1989 (1)

R. D. McPeters, “Climatology of nitric oxide in the upper stratosphere, mesosphere, and thermosphere: 1797 through 1986,” J. Geophys. Res. 94, 3461–3472 (1989).
[CrossRef]

1987 (1)

S. Solomon, A. L. Schmeltekopf, R. W. Sanders, “On the interpretation of zenith sky absorption measurements,” J. Geophys. Res. 92, 8311–8319 (1987).
[CrossRef]

1984 (1)

D. R. Bates, “Rayleigh scattering by air,” Planet. Space Sci. 32, 785–790 (1984).
[CrossRef]

1981 (3)

A. T. Young, “Rayleigh scattering,” Appl. Opt. 20, 533–535 (1981).
[CrossRef] [PubMed]

G. W. Kattawar, A. T. Young, T. J. Humphreys, “Inelastic scattering in planetary atmospheres. I. The Ring effect, without aerosols,” Astrophys. J. 243, 1049–1057 (1981).
[CrossRef]

W. D. Cochran, L. Trafton, W. Macy, J. H. Woodman, “Raman scattering in the Jovian atmosphere,” Astrophys. J. 247, 734–740 (1981).
[CrossRef]

1977 (1)

M. J. Price, “On probing the outer planets with the Raman effect,” Rev. Geophys. Space Phys. 15, 227–234 (1977).
[CrossRef]

1975 (2)

A. W. Harrison, “Diurnal variation of the Ring effect,” Can. J. Phys. 54, 1000–1005 (1975).
[CrossRef]

F. E. Barmore, “The filling-in of Fraunhofer lines in the day sky,” J. Atmos. Sci. 32, 1489–1493 (1975).
[CrossRef]

1974 (2)

A. W. Harrison, D. J. W. Kendall, “Fraunhofer line filling in (3855–4455 A),” Can. J. Phys. 52, 940–944 (1974).

C. M. Penney, R. L. St. Peters, M. Lapp, “Absolute rotational Raman cross sections for N2, O2, and CO2,” J. Opt. Soc. Am. 64, 712–716 (1974).
[CrossRef]

1972 (1)

L. Wallace, “Rayleigh and Raman scattering by H2 in a planetary atmosphere,” Astrophys. J. 176, 249–257 (1972).
[CrossRef]

1971 (1)

J. J. DeLuisi, C. L. Mateer, “On the application of the optimum statistical inversion technique to the evaluation of Umkehr observations,” J. Appl. Meteorol. 10, 328–334 (1971).
[CrossRef]

1968 (1)

R. T. Brinkman, “Rotational Raman scattering in planetary atmospheres,” Astrophys. J. 154, 1087–1093 (1968).
[CrossRef]

1964 (1)

J. V. Dave, “Multiple scattering in a non-homogeneous, Rayleigh atmosphere,” J. Atmos. Sci. 22, 273–279 (1964).
[CrossRef]

1962 (1)

J. F. Grainger, J. Ring, “Anomalous Fraunhofer line profiles,” Nature 193, 762 (1962).
[CrossRef]

Barmore, F. E.

F. E. Barmore, “The filling-in of Fraunhofer lines in the day sky,” J. Atmos. Sci. 32, 1489–1493 (1975).
[CrossRef]

Bates, D. R.

D. R. Bates, “Rayleigh scattering by air,” Planet. Space Sci. 32, 785–790 (1984).
[CrossRef]

Bhartia, P. K.

P. K. Bhartia, J. Herman, R. D. McPeters, O. Torres, “Effect of Mount Pinatubo aerosols on total ozone measurements from backscatter ultraviolet (BUV) experiments,” J. Geophys. Res. 98, 18547–18554 (1993).
[CrossRef]

J. Joiner, P. K. Bhartia, “Determination of cloud pressures using rotational Raman scattering in satellite backscatter ultraviolet measurements,” Submitted to J. Geophys. Res.

Brinkman, R. T.

R. T. Brinkman, “Rotational Raman scattering in planetary atmospheres,” Astrophys. J. 154, 1087–1093 (1968).
[CrossRef]

Burkholder, J. B.

G. D. Greenblatt, J. J. Orlando, J. B. Burkholder, A. R. Ravishankara, “Absorption measurements of oxygen between 330 and 1140 nm,” J. Geophys. Res. 95, 18577–18582 (1990).
[CrossRef]

Caffrey, R.

E. Hilsenrath, R. P. Cebula, R. Caffrey, S. Hynes, “Implications of space shuttle flight on the calibration of instruments observing atmospheric ozone and the solar irradiance,” Metrologia 28, 301–304 (1991).
[CrossRef]

Caudill, T. R.

T. R. Caudill, “Accuracy of the Total Ozone Mapping Spectrometer algorithm at polar latitudes,” Ph.D. dissertation (University of Arizona, Tucson, Ariz., 1994).

Cebula, R. P.

E. Hilsenrath, R. P. Cebula, R. Caffrey, S. Hynes, “Implications of space shuttle flight on the calibration of instruments observing atmospheric ozone and the solar irradiance,” Metrologia 28, 301–304 (1991).
[CrossRef]

R. P. Cebula, E. Hilsenrath, B. Guenther, “Calibration of the Shuttle borne Solar Backscatter Ultraviolet Spectrometer,” in Optical Radiation Measurements II, J. M. Palmer, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1109, 205–218 (1989).

Cochran, W. D.

W. D. Cochran, L. Trafton, W. Macy, J. H. Woodman, “Raman scattering in the Jovian atmosphere,” Astrophys. J. 247, 734–740 (1981).
[CrossRef]

Dave, J. V.

J. V. Dave, “Multiple scattering in a non-homogeneous, Rayleigh atmosphere,” J. Atmos. Sci. 22, 273–279 (1964).
[CrossRef]

DeLuisi, J. J.

J. J. DeLuisi, C. L. Mateer, “On the application of the optimum statistical inversion technique to the evaluation of Umkehr observations,” J. Appl. Meteorol. 10, 328–334 (1971).
[CrossRef]

Grainger, J. F.

J. F. Grainger, J. Ring, “Anomalous Fraunhofer line profiles,” Nature 193, 762 (1962).
[CrossRef]

Greenblatt, G. D.

G. D. Greenblatt, J. J. Orlando, J. B. Burkholder, A. R. Ravishankara, “Absorption measurements of oxygen between 330 and 1140 nm,” J. Geophys. Res. 95, 18577–18582 (1990).
[CrossRef]

Guenther, B.

R. P. Cebula, E. Hilsenrath, B. Guenther, “Calibration of the Shuttle borne Solar Backscatter Ultraviolet Spectrometer,” in Optical Radiation Measurements II, J. M. Palmer, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1109, 205–218 (1989).

Harrison, A. W.

A. W. Harrison, “Diurnal variation of the Ring effect,” Can. J. Phys. 54, 1000–1005 (1975).
[CrossRef]

A. W. Harrison, D. J. W. Kendall, “Fraunhofer line filling in (3855–4455 A),” Can. J. Phys. 52, 940–944 (1974).

Heath, D. F.

H. Park, D. F. Heath, C. L. Mateer, “Possible application of the Fraunhofer line filling-in effect to cloud height measurements,” in Meteorological Optics, 1986 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1986), pp. 70–81.

Herman, J.

P. K. Bhartia, J. Herman, R. D. McPeters, O. Torres, “Effect of Mount Pinatubo aerosols on total ozone measurements from backscatter ultraviolet (BUV) experiments,” J. Geophys. Res. 98, 18547–18554 (1993).
[CrossRef]

Hilsenrath, E.

E. Hilsenrath, R. P. Cebula, R. Caffrey, S. Hynes, “Implications of space shuttle flight on the calibration of instruments observing atmospheric ozone and the solar irradiance,” Metrologia 28, 301–304 (1991).
[CrossRef]

R. P. Cebula, E. Hilsenrath, B. Guenther, “Calibration of the Shuttle borne Solar Backscatter Ultraviolet Spectrometer,” in Optical Radiation Measurements II, J. M. Palmer, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1109, 205–218 (1989).

Humphreys, T. J.

G. W. Kattawar, A. T. Young, T. J. Humphreys, “Inelastic scattering in planetary atmospheres. I. The Ring effect, without aerosols,” Astrophys. J. 243, 1049–1057 (1981).
[CrossRef]

Hynes, S.

E. Hilsenrath, R. P. Cebula, R. Caffrey, S. Hynes, “Implications of space shuttle flight on the calibration of instruments observing atmospheric ozone and the solar irradiance,” Metrologia 28, 301–304 (1991).
[CrossRef]

Joiner, J.

J. Joiner, P. K. Bhartia, “Determination of cloud pressures using rotational Raman scattering in satellite backscatter ultraviolet measurements,” Submitted to J. Geophys. Res.

Kattawar, G. W.

G. W. Kattawar, A. T. Young, T. J. Humphreys, “Inelastic scattering in planetary atmospheres. I. The Ring effect, without aerosols,” Astrophys. J. 243, 1049–1057 (1981).
[CrossRef]

Kendall, D. J. W.

A. W. Harrison, D. J. W. Kendall, “Fraunhofer line filling in (3855–4455 A),” Can. J. Phys. 52, 940–944 (1974).

Lapp, M.

Macy, W.

W. D. Cochran, L. Trafton, W. Macy, J. H. Woodman, “Raman scattering in the Jovian atmosphere,” Astrophys. J. 247, 734–740 (1981).
[CrossRef]

Mateer, C. L.

J. J. DeLuisi, C. L. Mateer, “On the application of the optimum statistical inversion technique to the evaluation of Umkehr observations,” J. Appl. Meteorol. 10, 328–334 (1971).
[CrossRef]

H. Park, D. F. Heath, C. L. Mateer, “Possible application of the Fraunhofer line filling-in effect to cloud height measurements,” in Meteorological Optics, 1986 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1986), pp. 70–81.

McPeters, R. D.

P. K. Bhartia, J. Herman, R. D. McPeters, O. Torres, “Effect of Mount Pinatubo aerosols on total ozone measurements from backscatter ultraviolet (BUV) experiments,” J. Geophys. Res. 98, 18547–18554 (1993).
[CrossRef]

R. D. McPeters, “Climatology of nitric oxide in the upper stratosphere, mesosphere, and thermosphere: 1797 through 1986,” J. Geophys. Res. 94, 3461–3472 (1989).
[CrossRef]

Orlando, J. J.

G. D. Greenblatt, J. J. Orlando, J. B. Burkholder, A. R. Ravishankara, “Absorption measurements of oxygen between 330 and 1140 nm,” J. Geophys. Res. 95, 18577–18582 (1990).
[CrossRef]

Park, H.

H. Park, D. F. Heath, C. L. Mateer, “Possible application of the Fraunhofer line filling-in effect to cloud height measurements,” in Meteorological Optics, 1986 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1986), pp. 70–81.

Penney, C. M.

Peters, R. L. St.

Price, M. J.

M. J. Price, “On probing the outer planets with the Raman effect,” Rev. Geophys. Space Phys. 15, 227–234 (1977).
[CrossRef]

Ravishankara, A. R.

G. D. Greenblatt, J. J. Orlando, J. B. Burkholder, A. R. Ravishankara, “Absorption measurements of oxygen between 330 and 1140 nm,” J. Geophys. Res. 95, 18577–18582 (1990).
[CrossRef]

Ring, J.

J. F. Grainger, J. Ring, “Anomalous Fraunhofer line profiles,” Nature 193, 762 (1962).
[CrossRef]

Rottman, G. J.

G. J. Rottman, T. N. Woods, T. P. Sparn, “Solar-stellar irradiance comparison experiment 1. 1. Instrument design and operation,” J. Geophys. Res. 98, 10667–10677 (1993).
[CrossRef]

T. N. Woods, G. J. Rottman, G. J. Ucker, “Solar-stellar irradiance comparison experiment 1. 2. Instrument calibrations,” J. Geophys. Res. 98, 10679–10694 (1993).
[CrossRef]

Sanders, R. W.

S. Solomon, A. L. Schmeltekopf, R. W. Sanders, “On the interpretation of zenith sky absorption measurements,” J. Geophys. Res. 92, 8311–8319 (1987).
[CrossRef]

Schmeltekopf, A. L.

S. Solomon, A. L. Schmeltekopf, R. W. Sanders, “On the interpretation of zenith sky absorption measurements,” J. Geophys. Res. 92, 8311–8319 (1987).
[CrossRef]

Solomon, S.

S. Solomon, A. L. Schmeltekopf, R. W. Sanders, “On the interpretation of zenith sky absorption measurements,” J. Geophys. Res. 92, 8311–8319 (1987).
[CrossRef]

Sparn, T. P.

G. J. Rottman, T. N. Woods, T. P. Sparn, “Solar-stellar irradiance comparison experiment 1. 1. Instrument design and operation,” J. Geophys. Res. 98, 10667–10677 (1993).
[CrossRef]

Torres, O.

P. K. Bhartia, J. Herman, R. D. McPeters, O. Torres, “Effect of Mount Pinatubo aerosols on total ozone measurements from backscatter ultraviolet (BUV) experiments,” J. Geophys. Res. 98, 18547–18554 (1993).
[CrossRef]

Trafton, L.

W. D. Cochran, L. Trafton, W. Macy, J. H. Woodman, “Raman scattering in the Jovian atmosphere,” Astrophys. J. 247, 734–740 (1981).
[CrossRef]

Ucker, G. J.

T. N. Woods, G. J. Rottman, G. J. Ucker, “Solar-stellar irradiance comparison experiment 1. 2. Instrument calibrations,” J. Geophys. Res. 98, 10679–10694 (1993).
[CrossRef]

Wallace, L.

L. Wallace, “Rayleigh and Raman scattering by H2 in a planetary atmosphere,” Astrophys. J. 176, 249–257 (1972).
[CrossRef]

Woodman, J. H.

W. D. Cochran, L. Trafton, W. Macy, J. H. Woodman, “Raman scattering in the Jovian atmosphere,” Astrophys. J. 247, 734–740 (1981).
[CrossRef]

Woods, T. N.

G. J. Rottman, T. N. Woods, T. P. Sparn, “Solar-stellar irradiance comparison experiment 1. 1. Instrument design and operation,” J. Geophys. Res. 98, 10667–10677 (1993).
[CrossRef]

T. N. Woods, G. J. Rottman, G. J. Ucker, “Solar-stellar irradiance comparison experiment 1. 2. Instrument calibrations,” J. Geophys. Res. 98, 10679–10694 (1993).
[CrossRef]

Young, A. T.

A. T. Young, “Rayleigh scattering,” Appl. Opt. 20, 533–535 (1981).
[CrossRef] [PubMed]

G. W. Kattawar, A. T. Young, T. J. Humphreys, “Inelastic scattering in planetary atmospheres. I. The Ring effect, without aerosols,” Astrophys. J. 243, 1049–1057 (1981).
[CrossRef]

Appl. Opt. (1)

Astrophys. J. (4)

L. Wallace, “Rayleigh and Raman scattering by H2 in a planetary atmosphere,” Astrophys. J. 176, 249–257 (1972).
[CrossRef]

R. T. Brinkman, “Rotational Raman scattering in planetary atmospheres,” Astrophys. J. 154, 1087–1093 (1968).
[CrossRef]

W. D. Cochran, L. Trafton, W. Macy, J. H. Woodman, “Raman scattering in the Jovian atmosphere,” Astrophys. J. 247, 734–740 (1981).
[CrossRef]

G. W. Kattawar, A. T. Young, T. J. Humphreys, “Inelastic scattering in planetary atmospheres. I. The Ring effect, without aerosols,” Astrophys. J. 243, 1049–1057 (1981).
[CrossRef]

Can. J. Phys. (2)

A. W. Harrison, D. J. W. Kendall, “Fraunhofer line filling in (3855–4455 A),” Can. J. Phys. 52, 940–944 (1974).

A. W. Harrison, “Diurnal variation of the Ring effect,” Can. J. Phys. 54, 1000–1005 (1975).
[CrossRef]

J. Appl. Meteorol. (1)

J. J. DeLuisi, C. L. Mateer, “On the application of the optimum statistical inversion technique to the evaluation of Umkehr observations,” J. Appl. Meteorol. 10, 328–334 (1971).
[CrossRef]

J. Atmos. Sci. (2)

J. V. Dave, “Multiple scattering in a non-homogeneous, Rayleigh atmosphere,” J. Atmos. Sci. 22, 273–279 (1964).
[CrossRef]

F. E. Barmore, “The filling-in of Fraunhofer lines in the day sky,” J. Atmos. Sci. 32, 1489–1493 (1975).
[CrossRef]

J. Geophys. Res. (6)

S. Solomon, A. L. Schmeltekopf, R. W. Sanders, “On the interpretation of zenith sky absorption measurements,” J. Geophys. Res. 92, 8311–8319 (1987).
[CrossRef]

G. J. Rottman, T. N. Woods, T. P. Sparn, “Solar-stellar irradiance comparison experiment 1. 1. Instrument design and operation,” J. Geophys. Res. 98, 10667–10677 (1993).
[CrossRef]

T. N. Woods, G. J. Rottman, G. J. Ucker, “Solar-stellar irradiance comparison experiment 1. 2. Instrument calibrations,” J. Geophys. Res. 98, 10679–10694 (1993).
[CrossRef]

R. D. McPeters, “Climatology of nitric oxide in the upper stratosphere, mesosphere, and thermosphere: 1797 through 1986,” J. Geophys. Res. 94, 3461–3472 (1989).
[CrossRef]

G. D. Greenblatt, J. J. Orlando, J. B. Burkholder, A. R. Ravishankara, “Absorption measurements of oxygen between 330 and 1140 nm,” J. Geophys. Res. 95, 18577–18582 (1990).
[CrossRef]

P. K. Bhartia, J. Herman, R. D. McPeters, O. Torres, “Effect of Mount Pinatubo aerosols on total ozone measurements from backscatter ultraviolet (BUV) experiments,” J. Geophys. Res. 98, 18547–18554 (1993).
[CrossRef]

J. Opt. Soc. Am. (1)

Metrologia (1)

E. Hilsenrath, R. P. Cebula, R. Caffrey, S. Hynes, “Implications of space shuttle flight on the calibration of instruments observing atmospheric ozone and the solar irradiance,” Metrologia 28, 301–304 (1991).
[CrossRef]

Nature (1)

J. F. Grainger, J. Ring, “Anomalous Fraunhofer line profiles,” Nature 193, 762 (1962).
[CrossRef]

Planet. Space Sci. (1)

D. R. Bates, “Rayleigh scattering by air,” Planet. Space Sci. 32, 785–790 (1984).
[CrossRef]

Rev. Geophys. Space Phys. (1)

M. J. Price, “On probing the outer planets with the Raman effect,” Rev. Geophys. Space Phys. 15, 227–234 (1977).
[CrossRef]

Other (4)

H. Park, D. F. Heath, C. L. Mateer, “Possible application of the Fraunhofer line filling-in effect to cloud height measurements,” in Meteorological Optics, 1986 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1986), pp. 70–81.

R. P. Cebula, E. Hilsenrath, B. Guenther, “Calibration of the Shuttle borne Solar Backscatter Ultraviolet Spectrometer,” in Optical Radiation Measurements II, J. M. Palmer, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1109, 205–218 (1989).

T. R. Caudill, “Accuracy of the Total Ozone Mapping Spectrometer algorithm at polar latitudes,” Ph.D. dissertation (University of Arizona, Tucson, Ariz., 1994).

J. Joiner, P. K. Bhartia, “Determination of cloud pressures using rotational Raman scattering in satellite backscatter ultraviolet measurements,” Submitted to J. Geophys. Res.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

1 − f 0 and 1 − f ¯ 0 computed as a function of scattering angle Θ at λ = 390 nm.

Fig. 2
Fig. 2

1 − f 0 and 1 − f ¯ 0 computed as a function of wavelength at Θ = 0°.

Fig. 3
Fig. 3

Rotational Raman line strengths L (normalized such that the sum over all lines is equal to unity) for (a) N2 and (b) O2 for radiance measured at λ = 390 nm and T = 273 K.

Fig. 4
Fig. 4

Measured solar irradiance from the SOLSTICE and SSBUV instruments as a function of wavelength.

Fig. 5
Fig. 5

Single-scatter filling in, k 1, as a function of wavelength computed at the SOLSTICE and SSBUV resolutions for solar zenith angle θ0 = 45°.

Fig. 6
Fig. 6

Single-scatter filling in computed with and without terrestrial absorption as a function of wavelength at the SSBUV resolution.

Fig. 7
Fig. 7

Single-scatter filling in, k 1, computed at λ = 393 nm as a function of solar zenith angle; solid-angle average of single-scatter filling in, k ¯ 1 , and filling in at λ = 393 nm, k, including effects of multiple scattering and excluding surface-reflection effects.

Fig. 8
Fig. 8

Computed filling in, k, including multiple-scattering and surface-reflection effects as a function of solar zenith angle at the SSBUV resolution with λ = 393 nm, surface pressure of 1.0 bar, and reflectivities of 8%, 20%, and 95%.

Fig. 9
Fig. 9

Computed filling in, k, as a function of solar zenith angle at the SSBUV resolution with λ = 393 nm, reflectivity of 80%, and surface (cloud top) pressures of 1.0, 0.6, and 0.3 bar.

Fig. 10
Fig. 10

Computed filling in, k c , at θ0 = 88°, and computed filling in, k Δλ, with error caused by a wavelength shift of −0.02 nm between radiance and irradiance scans.

Fig. 11
Fig. 11

Observed filling in, k ob (or corrected radiance residual, solid curve), from the average of two SSBUV sweep mode scans with an average solar zenith angle of 87.5°, and computed percent filling in, k c (dotted curve), as a function of wavelength.

Fig. 12
Fig. 12

SSBUV observed mean filling in as a function of solar zenith angle at 393.5, 359.8, and 358.6 nm, with error bars indicating the standard error of the mean obtained in relatively cloud-free conditions (reflectivities <25%).

Fig. 13
Fig. 13

SBUV observed mean filling in as a function of solar zenith angle at 393.5, 359.9, and 358.5 nm, with error bars indicating the standard error of the mean obtained in relatively cloud-free conditions (reflectivities <25%). Solid curves are the computed filling in, and the dotted curves are the computed filling in multiplied by an empirical offset.

Fig. 14
Fig. 14

Ratio between filling in observed with the SSBUV and SBUV instruments as a function of solar zenith angle (solid curves) for 393.5, 359.9, and 358.5 nm. Dotted lines are the ratios averaged over all solar zenith angles.

Fig. 15
Fig. 15

SBUV observed mean percent filling in as a function of solar zenith angle at 285 nm. The solid curve is the computed single-scatter filling in and the dotted curve is the computed filling in multiplied by an empirical offset.

Fig. 16
Fig. 16

SSBUV observed mean percent filling in as a function of reflectivity at 393.5, 359.8, and 358.6 nm, with standard error bars for solar zenith angles between 35° and 70°.

Tables (4)

Tables Icon

Table 1 I n /I R (%) for λ = 360 nm and λ = 393 nm

Tables Icon

Table 2 t n /t, S bn /S b , and g n /g(%) for λ = 393 nm

Tables Icon

Table 3 I n /I R (R = 0), t n /t, S bn /S b , and g n /g (%) for λ = 393 nm, θ0 = 45°, and Surface Pressure P = 0.6 and P = 0.3

Tables Icon

Table 4 Components of IR for Unit Solar Flux at λ = 393 nm

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

f 0 = ( 180 + 13 ) + ( 180 + ) cos 2 Θ ( 180 + 52 ) + ( 180 + 4 ) cos 2 Θ
f ¯ 0 = 18.0 + 1.0 18.0 + 4.0 .
L ( ν ) = χ N 2 L N 2 ( ν ) + χ O 2 L O 2 ( ν ) K ,
L J = F J b J J ,
F J = g J ( 2 J + 1 ) exp ( - E J / k T ) ,
b J J + 2 = 3 ( J + 1 ) ( J + 2 ) 2 ( 2 J + 1 ) ( 2 J + 3 ) ,
b J J - 2 = 3 ( J - 1 ) 2 ( 2 J + 1 ) ( 2 J - 1 ) ,
k ( λ 0 ) = I m ( λ 0 ) - I R ( λ ) B ( λ - λ 0 ) d λ I R ( λ ) B ( λ - λ 0 ) d λ = I m ( λ 0 ) - I ¯ R ( λ 0 ) I ¯ R ( λ 0 ) ,
I R ( λ ) = F ( λ ) P ( Θ , λ ) × p 0 exp [ - α ( λ ) S x ( p ) - β ( λ ) S p ] d p ,
I m ( λ 0 ) = f 0 ( λ ) I R ( λ ) B ( λ - λ 0 ) d λ + { [ 1 - f 0 ( λ ) ] L ( λ - λ ) I R ( λ ) d λ } × B ( λ - λ 0 ) d λ ,
I m ( λ 0 ) = f 0 ( λ 0 ) I R ( λ ) B ( λ - λ 0 ) d λ + [ 1 - f 0 ( λ 0 ) ] [ L ( λ - λ ) I R ( λ ) d λ ] × B ( λ - λ 0 ) d λ ,
I m ( λ 0 ) = [ C 1 ( λ 0 ) I R ( λ 0 ) ] B ( - λ 0 ) = C 1 ( λ 0 ) [ I R ( λ 0 ) B ( - λ 0 ) ] = C 1 ( λ 0 ) I ¯ R ( λ 0 ) ,
C 1 ( λ 0 ) = f 0 ( λ 0 ) δ ( λ 0 ) + [ 1 - f 0 ( λ 0 ) ] L ( λ 0 ) ,
k 1 ( λ 0 ) = C 1 ( λ 0 ) I ¯ R ( λ 0 ) I ¯ R ( λ 0 ) - 1.
I ¯ R ( λ ) = n = 1 I ¯ n ( λ ) ,
k = k 1 I ¯ 1 I ¯ R + n = 2 k ¯ n I ¯ n I ¯ R ,
k ¯ n = C ¯ n * I ¯ R I ¯ R - 1 ,
C ¯ 2 ( λ 0 ) = C ¯ 1 ( λ 0 ) * C ¯ 1 ( λ 0 ) = f ¯ 0 2 δ ( λ 0 ) + 2 f ¯ 0 ( 1 - f ¯ 0 ) L ¯ ( λ 0 ) + ( 1 - f ¯ 0 ) 2 [ L ¯ ( λ 0 ) * L ¯ ( λ 0 ) ] ,
k ¯ 2 [ 2 f ¯ 0 δ ( λ 0 ) + 2 ( 1 - f ¯ 0 ) L ¯ ( λ 0 ) - δ ( λ 0 ) ] * I ¯ R I ¯ R - 1 = 2 C ¯ 1 ( λ 0 ) * I ¯ R I ¯ R ( λ 0 ) - 2 = 2 k ¯ 1 .
k ¯ n n k ¯ 1 ,
k = k 1 I ¯ 1 I ¯ R + k ¯ 1 n = 2 n I ¯ n I ¯ R .
I ¯ R = I ¯ R ( R = 0 ) + R I g ( μ 0 ) γ ( μ ) + R 2 I g ( μ 0 ) γ ( μ ) S b + R 3 I g ( μ 0 ) γ ( μ ) S b 2 + = I ¯ R ( R = 0 ) + R I g ( μ 0 ) γ ( μ ) 1 - R S b ,
I g ( μ 0 ) γ ( μ ) = [ μ 0 exp ( - τ 0 / μ 0 ) + g ] [ exp ( - τ / μ ) + t ] = μ 0 exp ( - τ 0 / μ 0 ) exp ( - τ / μ ) + μ 0 exp ( - τ 0 / μ 0 ) t + g exp ( - τ / μ ) + g t ,
k = k ( R = 0 ) I ¯ R ( R = 0 ) I ¯ R + R I ¯ R × { n = 1 k ¯ n [ g n exp ( - τ / μ ) + t n μ 0 exp ( - τ 0 / μ 0 ) ] + n 1 = 1 n 2 = 1 k ¯ ( n 1 + n 2 ) g n 1 t n 2 } + R 2 I R × { n 1 = 1 n 2 = 1 k ¯ ( n 1 + n 2 ) [ g n 1 S b n 2 exp ( - τ / μ ) + t n 1 S b n 2 μ 0 exp ( - τ 0 / μ 0 ) ] + n 1 = 1 n 2 = 1 n 3 = 1 k ¯ ( n 1 + n 2 + n 3 ) g n 1 t n 2 S b n 3 + n = 1 k ¯ n S b n exp ( - τ / μ ) μ 0 exp ( - τ 0 / μ 0 ) } + ,
k k ( R = 0 ) I ¯ R ( R = 0 ) I ¯ R + k ¯ 1 I ¯ R [ R I g γ n R + R 2 I g γ S b ( n R + n b ) + R 3 I g γ S b 2 ( n R + 2 n b ) + ] ,
n b = n = 1 n S b n S b ,
n R = n g g exp ( - τ / μ ) + n t t μ 0 exp ( - τ / μ 0 ) + n g t g t I g ( μ 0 ) γ ( μ ) ,
n g = n = 1 n g n g ,
n t = n = 1 n t n t ,
n g t = n 1 n 2 = 1 ( n 1 + n 2 ) ( g n 1 t n 2 ) g t = n g + n t .
k = k ( R = 0 ) I ¯ R ( R = 0 ) I ¯ R + k ¯ 1 I ¯ R [ R I g γ n R 1 - R S b + R 2 I g γ S b n b ( 1 - R S b ) 2 ] .

Metrics