Abstract

A six-channel Sun photometer has been calibrated by means of two different methods: Langley plots and standard irradiance lamps. A 4-month calibration campaign was carried out at a high mountain site, Jungfraujoch (3580 m above sea level), in the Swiss Alps. Calibration constants V 0(λ) determined on clear and stable days by means of a refined Langley-plot technique scatter by less than 0.25% (rms) for wavelengths outside of strong gaseous absorption bands. Inside the 0.94-μm water-vapor absorption band, the V 0(λ) values retrieved by means of modified Langley plots scatter by 1.0% (rms). Repeated calibrations of the Sun photometer by means of irradiance standard lamps were performed at the World Radiation Center in Davos. The comparison of both methods ranges from perfect agreement to a deviation of 4.9% for the different channels. A discussion of the errors introduced by both methods shows that the Langley-plot calibration, when performed under very clear atmospheric conditions, is superior. However, by means of the standard-lamp calibrations a temporal degradation of the instrument’s response up to 4.6% per year was found, implying that a single calibration campaign as done here is not sufficient. Thus we recommend the use of a combination of both methods for maintaining an accurate calibration.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. E. Volz, “Photometer mit Selen-Photoelement zur spektralen Messung der Sonnenstrahlung und zur Bestimmmung der Wellenlängenabhängigkeit der Dunsttrübung,” Arch. Meteorol. Geophys. Bioklimatol. Ser. B 10, 100–131 (1959).
    [CrossRef]
  2. P. B. Russell, J. M. Livingston, E. G. Dutton, R. F. Puschel, J. A. Reagan, T. E. Defoor, M. A. Box, D. Allen, P. Pilewski, B. M. Herman, S. A. Kinne, D. J. Hofmann, “Pinatubo and pre-Pinatubo optical-depth spectra: Mauna Loa measurements, comparisons, inferred particle size distributions, radiative effects, and relationship to lidar data,” J. Geophys. Res. 98, 22,969–22,985 (1993).
    [CrossRef]
  3. C. J. Bruegge, J. E. Conel, R. O. Green, J. S. Margolis, R. G. Holm, G. Toon, “Water vapor column abundance retrievals during FIFE,” J. Geophys. Res. 97, 18,759–18,768 (1992).
    [CrossRef]
  4. B. A. LeBaron, J. J. Michalsky, “Ozone measurement using the Chappuis band in the visible spectral region,” in Proceedings of the International Radiation Symposium ’88, J. Lenoble, J. F. Geleyn, eds. (Deepak, Hampton, Va., 1988), pp. 519–522.
  5. C. Tomasi, S. Marani, V. Vitale, “Multiwavelength sunphotometer calibration corrected on the basis of the spectral features characterizing particulate extinction and nitrogen dioxide absorption,” Appl. Opt. 24, 2962–2970 (1985).
    [CrossRef] [PubMed]
  6. E. Dutton, J. DeLuisi, “Results of a sunphotometer intercomparison held at Boulder, 19 October to 16 December 1981,” NOAA Tech. Mem. ERL ARL-114 (National Oceanic and Atmospheric Administration, Washington, D.C., 1982).
  7. World Meteorological Organization, “Recent progress in sun photometry. Determination of the aerosol optical depth,” Environmental Pollution Monitoring and Research Program 43, obtainable as WMO/TD 143 (World Meteorological Organization, Geneva, Switzerland, 1986).
  8. R. N. Halthore, C. J. Bruegge, B. Markham, “Aerosol optical thickness measurements during FIFE’89,” in Symposium on FIFE (American Meteorological Society, Anaheim, Calif., 1990), pp. 121–125.
  9. Ch. Wehrli, “Extraterrestrial solar spectrum,” Publ. 615 (Physikalisch-Meteorologisces Observatorium Davos, Davos, Switzerland, 1985).
  10. G. E. Shaw, “Solar spectral irradiance and atmospheric transmission at Mauna Loa Observatory,” Appl. Opt. 21, 2006–2011 (1982).
    [CrossRef] [PubMed]
  11. E. G. Dutton, P. Reddy, S. Ryan, J. DeLuisi, “Features and effects of aerosol optical depth observed at Mauna Loa, Hawaii: 1982–1992,” J. Geophys. Res. 99, 8295–8306 (1994).
    [CrossRef]
  12. R. E. Bird, C. Riordan, “Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the Earth’s surface for cloudless atmospheres,” J. Clim. Appl. Meteorol. 25, 87–97 (1986).
    [CrossRef]
  13. C. J. Bruegge, R. N. Halthore, B. Markham, M. Spanner, R. Wrigley, “Aerosol optical depth retrievals over the Konza Prairie,” J. Geophys. Res. 97, 18,743–18,758 (1992).
    [CrossRef]
  14. R. Guzzi, G. C. Maracci, A. Siccardi, “Spectrometer for ground-based atmospheric measurements related to remote sensing in the visible from a satellite,” Appl. Opt. 24, 2859–2864 (1985).
    [CrossRef] [PubMed]
  15. L. W. Thomason, B. M. Herman, J. A. Reagan, “The effect of atmospheric attenuators with structured vertical distributions on air mass determinations and Langley plot analyses,” J. Atmos. Sci. 40, 1851–1854 (1983).
    [CrossRef]
  16. F. Kasten, A. T. Young, “Revised optical air mass tables and approximation formula,” Appl. Opt. 28, 4735–4738 (1989).
    [CrossRef] [PubMed]
  17. A. T. Young, “High-resolution photometry of a thin planetary atmosphere,” Icarus 11, 1–23 (1969).
    [CrossRef]
  18. P. Duffett-Smith, “Practical astronomy with your calculator,” 3rd ed. (Cambridge U. Press, Cambridge, England, 1988).
  19. J. Meeus, Astronomische Algorithmen (Barth-Verlag, Berlin, 1992).
  20. Messung der Lufttrübung durch Aerosolpartikel mit Sonnen-photometern, VDI 3786, Blatt 10, (VDI-Richtlinien, Umweltmeteorologie, Verein Deutscher Ingenieure, Graf-Recke-Strasse 84, 4000 Düsseldorf 1, 1994).
  21. E. C. Y. Inn, Y. Tanaka, “Absorption coefficient of ozone in the ultraviolet and visible regions,” J. Opt. Soc. Am. 43, 870–873 (1953).
    [CrossRef]
  22. F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwind, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to lowtrant 7,” Environ. Res. Papers 1010 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Bedford, Mass., 01731.
  23. W. Schneider, G. K. Moortgat, G. S. Tyndall, J. P. Burrows, “Absorption cross-sections of NO2 in the UV and visible region (200–700 nm) at 298 K,” J. Photochem. Photobiol. A 40, 195–217 (1987).
    [CrossRef]
  24. M. Huber, “Gerätetechnische Adaption eines hochauflösenden Doppelmonochromators zur Messung solarer UV-Spektren und des atmosphärischen Ozons,” Ph.D. dissertation (Institute for Medical Physics, University of Innsbruck, Innsbruck, Austria, 1994).
  25. M. van Roozendael, M. De Mazière, P. C. Simon, “Ground-based visible measurements at the Jungfraujoch Station since 1990,” J. Quant. Spectrosc. Radiat. Transfer 52, 231–240 (1994).
    [CrossRef]
  26. N. T. O’Neill, J. R. Miller, “Combined solar aureole and solar beam extinction measurements,” Appl. Opt. 23, 3691–3704 (1984).
    [CrossRef]
  27. P. C. Simon, ed., “European stratospheric monitoring stations,” Progress Rep. (Aeronomy Institute, Brussels, Belgium, 1991).
  28. N. T. O’Neill, A. Royer, P. Coté, L. J. B. McArthur, “Relations between optically derived aerosol parameters, humidity and air-quality data in an urban atmosphere,” J. Appl. Meteorol 32, 1484–1498 (1993).
    [CrossRef]
  29. R. Peter, B. Schmid, “Comparison of columnar water vapor determined from microwave emission and solar transmission measurements,” in Topical Symposium on Combined Optical-Microwave Earth and Atmosphere Sensing (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1993), pp. 193–197.
    [CrossRef]
  30. Instruments and Apparatus, Part 1. Measurement Uncertainty. ANSI/ASME Performance Test Codes 19.1-1985 (American Society of Mechanical Engineers, New York, 1986).
  31. M. A. Box, B. M. Herman, “Bandwidth, scattered light, and temporal variability effects in spectral solar radiometry,” in Proceedings of the 4th Conference on Atmospheric Radiation (American Meteorological Society, Anaheim, Calif., 1981), pp. 103–107.
  32. H. Grassl, “Calculated circumsolar radiation as a function of aerosol type, field of view, wavelength, and optical depth,” Appl. Opt. 10, 2542–2543 (1971).
    [CrossRef] [PubMed]
  33. J. A. Reagan, L. W. Thomason, B. M. Herman, J. M. Palmer, “Assessment of atmospheric limitations on the determination of the solar spectral constant from ground-based spectroradiometer measurements,” IEEE Trans. Geosci. Remote Sensing 24, 258–266 (1986).
    [CrossRef]
  34. R. M. Schotland, T. K. Lea, “Bias in a solar constant determination by the Langley method due to structured atmospheric aerosol,” Appl. Opt. 25, 2486–2491 (1986).
    [CrossRef] [PubMed]
  35. J. A. Reagan, I. C. Scott-Fleming, B. M. Herman, R. M. Schotland, “Recovery of spectral optical depth and zero-airmass Solar Spectral irradiance under conditions of temporally varying optical depth,” in International Geoscience and Remote Sensing Symposium (European Space Agency, Noordwijk, The Netherlands, 1984), pp. 455–459.
  36. M. Tanaka, T. Nakajima, M. Shiobara, “Calibration of a sunphotometer by simultaneous measurements of direct-solar and circumsolar radiations,” Appl. Opt. 25, 1170–1176 (1986).
    [CrossRef] [PubMed]
  37. J. A. Reagan, K. Thome, B. Herman, R. Gall, “Water vapor measurements in the 0.94 micron absorption band: calibration, measurements and data applications,” presented at the IGARSS ’87 Symposium, Ann Arbor, Mich., 18–21 May 1987.
  38. F. Kasten, “A new table and approximation formula for relative optical air mass,” Arch. Meteorol. Geophys. Bioklimatol. Ser. B 14, 206–223 (1965).
    [CrossRef]
  39. R. D. Saunders, J. B. Shumaker, “The 1973 NBS scale of spectral irradiance,” Natl. Bur. Stand. Tech. Note 594-13 (1977).
  40. H. Neckel, D. Labs, “The solar radiation between 3300 and 12500 Å,” Solar Phys. 90, 205–258 (1984).
    [CrossRef]
  41. E. V. P. Smith, D. M. Gottlieb, “Solar flux and its variations,” Space Sci. Rev. 16, 771–802 (1974).
    [CrossRef]
  42. Ch. Wehrli, C. Fröhlich, “Solar spectral irradiance measurements at 386 nm, 500 nm and 778 nm,” Metrologia 28, 285–289 (1991).
    [CrossRef]
  43. Ch. Wehrli, “Solar spectral irradiance measurements with sunphotometers,” in Proceedings from Workshop on Solar Electromagnetic Radiation Study for Solar Cycle 22, R. F. Donnelly, ed. (National Oceanic and Atmospheric Administration, Washington, D.C., 1992), pp. 54–61.

1994 (2)

E. G. Dutton, P. Reddy, S. Ryan, J. DeLuisi, “Features and effects of aerosol optical depth observed at Mauna Loa, Hawaii: 1982–1992,” J. Geophys. Res. 99, 8295–8306 (1994).
[CrossRef]

M. van Roozendael, M. De Mazière, P. C. Simon, “Ground-based visible measurements at the Jungfraujoch Station since 1990,” J. Quant. Spectrosc. Radiat. Transfer 52, 231–240 (1994).
[CrossRef]

1993 (2)

N. T. O’Neill, A. Royer, P. Coté, L. J. B. McArthur, “Relations between optically derived aerosol parameters, humidity and air-quality data in an urban atmosphere,” J. Appl. Meteorol 32, 1484–1498 (1993).
[CrossRef]

P. B. Russell, J. M. Livingston, E. G. Dutton, R. F. Puschel, J. A. Reagan, T. E. Defoor, M. A. Box, D. Allen, P. Pilewski, B. M. Herman, S. A. Kinne, D. J. Hofmann, “Pinatubo and pre-Pinatubo optical-depth spectra: Mauna Loa measurements, comparisons, inferred particle size distributions, radiative effects, and relationship to lidar data,” J. Geophys. Res. 98, 22,969–22,985 (1993).
[CrossRef]

1992 (2)

C. J. Bruegge, J. E. Conel, R. O. Green, J. S. Margolis, R. G. Holm, G. Toon, “Water vapor column abundance retrievals during FIFE,” J. Geophys. Res. 97, 18,759–18,768 (1992).
[CrossRef]

C. J. Bruegge, R. N. Halthore, B. Markham, M. Spanner, R. Wrigley, “Aerosol optical depth retrievals over the Konza Prairie,” J. Geophys. Res. 97, 18,743–18,758 (1992).
[CrossRef]

1991 (1)

Ch. Wehrli, C. Fröhlich, “Solar spectral irradiance measurements at 386 nm, 500 nm and 778 nm,” Metrologia 28, 285–289 (1991).
[CrossRef]

1989 (1)

1987 (1)

W. Schneider, G. K. Moortgat, G. S. Tyndall, J. P. Burrows, “Absorption cross-sections of NO2 in the UV and visible region (200–700 nm) at 298 K,” J. Photochem. Photobiol. A 40, 195–217 (1987).
[CrossRef]

1986 (4)

R. E. Bird, C. Riordan, “Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the Earth’s surface for cloudless atmospheres,” J. Clim. Appl. Meteorol. 25, 87–97 (1986).
[CrossRef]

J. A. Reagan, L. W. Thomason, B. M. Herman, J. M. Palmer, “Assessment of atmospheric limitations on the determination of the solar spectral constant from ground-based spectroradiometer measurements,” IEEE Trans. Geosci. Remote Sensing 24, 258–266 (1986).
[CrossRef]

M. Tanaka, T. Nakajima, M. Shiobara, “Calibration of a sunphotometer by simultaneous measurements of direct-solar and circumsolar radiations,” Appl. Opt. 25, 1170–1176 (1986).
[CrossRef] [PubMed]

R. M. Schotland, T. K. Lea, “Bias in a solar constant determination by the Langley method due to structured atmospheric aerosol,” Appl. Opt. 25, 2486–2491 (1986).
[CrossRef] [PubMed]

1985 (2)

1984 (2)

N. T. O’Neill, J. R. Miller, “Combined solar aureole and solar beam extinction measurements,” Appl. Opt. 23, 3691–3704 (1984).
[CrossRef]

H. Neckel, D. Labs, “The solar radiation between 3300 and 12500 Å,” Solar Phys. 90, 205–258 (1984).
[CrossRef]

1983 (1)

L. W. Thomason, B. M. Herman, J. A. Reagan, “The effect of atmospheric attenuators with structured vertical distributions on air mass determinations and Langley plot analyses,” J. Atmos. Sci. 40, 1851–1854 (1983).
[CrossRef]

1982 (1)

1974 (1)

E. V. P. Smith, D. M. Gottlieb, “Solar flux and its variations,” Space Sci. Rev. 16, 771–802 (1974).
[CrossRef]

1971 (1)

1969 (1)

A. T. Young, “High-resolution photometry of a thin planetary atmosphere,” Icarus 11, 1–23 (1969).
[CrossRef]

1965 (1)

F. Kasten, “A new table and approximation formula for relative optical air mass,” Arch. Meteorol. Geophys. Bioklimatol. Ser. B 14, 206–223 (1965).
[CrossRef]

1959 (1)

F. E. Volz, “Photometer mit Selen-Photoelement zur spektralen Messung der Sonnenstrahlung und zur Bestimmmung der Wellenlängenabhängigkeit der Dunsttrübung,” Arch. Meteorol. Geophys. Bioklimatol. Ser. B 10, 100–131 (1959).
[CrossRef]

1953 (1)

Abreu, L. W.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwind, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to lowtrant 7,” Environ. Res. Papers 1010 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Bedford, Mass., 01731.

Allen, D.

P. B. Russell, J. M. Livingston, E. G. Dutton, R. F. Puschel, J. A. Reagan, T. E. Defoor, M. A. Box, D. Allen, P. Pilewski, B. M. Herman, S. A. Kinne, D. J. Hofmann, “Pinatubo and pre-Pinatubo optical-depth spectra: Mauna Loa measurements, comparisons, inferred particle size distributions, radiative effects, and relationship to lidar data,” J. Geophys. Res. 98, 22,969–22,985 (1993).
[CrossRef]

Anderson, G. P.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwind, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to lowtrant 7,” Environ. Res. Papers 1010 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Bedford, Mass., 01731.

Bird, R. E.

R. E. Bird, C. Riordan, “Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the Earth’s surface for cloudless atmospheres,” J. Clim. Appl. Meteorol. 25, 87–97 (1986).
[CrossRef]

Box, M. A.

P. B. Russell, J. M. Livingston, E. G. Dutton, R. F. Puschel, J. A. Reagan, T. E. Defoor, M. A. Box, D. Allen, P. Pilewski, B. M. Herman, S. A. Kinne, D. J. Hofmann, “Pinatubo and pre-Pinatubo optical-depth spectra: Mauna Loa measurements, comparisons, inferred particle size distributions, radiative effects, and relationship to lidar data,” J. Geophys. Res. 98, 22,969–22,985 (1993).
[CrossRef]

M. A. Box, B. M. Herman, “Bandwidth, scattered light, and temporal variability effects in spectral solar radiometry,” in Proceedings of the 4th Conference on Atmospheric Radiation (American Meteorological Society, Anaheim, Calif., 1981), pp. 103–107.

Bruegge, C. J.

C. J. Bruegge, J. E. Conel, R. O. Green, J. S. Margolis, R. G. Holm, G. Toon, “Water vapor column abundance retrievals during FIFE,” J. Geophys. Res. 97, 18,759–18,768 (1992).
[CrossRef]

C. J. Bruegge, R. N. Halthore, B. Markham, M. Spanner, R. Wrigley, “Aerosol optical depth retrievals over the Konza Prairie,” J. Geophys. Res. 97, 18,743–18,758 (1992).
[CrossRef]

R. N. Halthore, C. J. Bruegge, B. Markham, “Aerosol optical thickness measurements during FIFE’89,” in Symposium on FIFE (American Meteorological Society, Anaheim, Calif., 1990), pp. 121–125.

Burrows, J. P.

W. Schneider, G. K. Moortgat, G. S. Tyndall, J. P. Burrows, “Absorption cross-sections of NO2 in the UV and visible region (200–700 nm) at 298 K,” J. Photochem. Photobiol. A 40, 195–217 (1987).
[CrossRef]

Chetwind, J. H.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwind, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to lowtrant 7,” Environ. Res. Papers 1010 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Bedford, Mass., 01731.

Clough, S. A.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwind, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to lowtrant 7,” Environ. Res. Papers 1010 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Bedford, Mass., 01731.

Conel, J. E.

C. J. Bruegge, J. E. Conel, R. O. Green, J. S. Margolis, R. G. Holm, G. Toon, “Water vapor column abundance retrievals during FIFE,” J. Geophys. Res. 97, 18,759–18,768 (1992).
[CrossRef]

Coté, P.

N. T. O’Neill, A. Royer, P. Coté, L. J. B. McArthur, “Relations between optically derived aerosol parameters, humidity and air-quality data in an urban atmosphere,” J. Appl. Meteorol 32, 1484–1498 (1993).
[CrossRef]

De Mazière, M.

M. van Roozendael, M. De Mazière, P. C. Simon, “Ground-based visible measurements at the Jungfraujoch Station since 1990,” J. Quant. Spectrosc. Radiat. Transfer 52, 231–240 (1994).
[CrossRef]

Defoor, T. E.

P. B. Russell, J. M. Livingston, E. G. Dutton, R. F. Puschel, J. A. Reagan, T. E. Defoor, M. A. Box, D. Allen, P. Pilewski, B. M. Herman, S. A. Kinne, D. J. Hofmann, “Pinatubo and pre-Pinatubo optical-depth spectra: Mauna Loa measurements, comparisons, inferred particle size distributions, radiative effects, and relationship to lidar data,” J. Geophys. Res. 98, 22,969–22,985 (1993).
[CrossRef]

DeLuisi, J.

E. G. Dutton, P. Reddy, S. Ryan, J. DeLuisi, “Features and effects of aerosol optical depth observed at Mauna Loa, Hawaii: 1982–1992,” J. Geophys. Res. 99, 8295–8306 (1994).
[CrossRef]

E. Dutton, J. DeLuisi, “Results of a sunphotometer intercomparison held at Boulder, 19 October to 16 December 1981,” NOAA Tech. Mem. ERL ARL-114 (National Oceanic and Atmospheric Administration, Washington, D.C., 1982).

Duffett-Smith, P.

P. Duffett-Smith, “Practical astronomy with your calculator,” 3rd ed. (Cambridge U. Press, Cambridge, England, 1988).

Dutton, E.

E. Dutton, J. DeLuisi, “Results of a sunphotometer intercomparison held at Boulder, 19 October to 16 December 1981,” NOAA Tech. Mem. ERL ARL-114 (National Oceanic and Atmospheric Administration, Washington, D.C., 1982).

Dutton, E. G.

E. G. Dutton, P. Reddy, S. Ryan, J. DeLuisi, “Features and effects of aerosol optical depth observed at Mauna Loa, Hawaii: 1982–1992,” J. Geophys. Res. 99, 8295–8306 (1994).
[CrossRef]

P. B. Russell, J. M. Livingston, E. G. Dutton, R. F. Puschel, J. A. Reagan, T. E. Defoor, M. A. Box, D. Allen, P. Pilewski, B. M. Herman, S. A. Kinne, D. J. Hofmann, “Pinatubo and pre-Pinatubo optical-depth spectra: Mauna Loa measurements, comparisons, inferred particle size distributions, radiative effects, and relationship to lidar data,” J. Geophys. Res. 98, 22,969–22,985 (1993).
[CrossRef]

Fröhlich, C.

Ch. Wehrli, C. Fröhlich, “Solar spectral irradiance measurements at 386 nm, 500 nm and 778 nm,” Metrologia 28, 285–289 (1991).
[CrossRef]

Gall, R.

J. A. Reagan, K. Thome, B. Herman, R. Gall, “Water vapor measurements in the 0.94 micron absorption band: calibration, measurements and data applications,” presented at the IGARSS ’87 Symposium, Ann Arbor, Mich., 18–21 May 1987.

Gallery, W. O.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwind, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to lowtrant 7,” Environ. Res. Papers 1010 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Bedford, Mass., 01731.

Gottlieb, D. M.

E. V. P. Smith, D. M. Gottlieb, “Solar flux and its variations,” Space Sci. Rev. 16, 771–802 (1974).
[CrossRef]

Grassl, H.

Green, R. O.

C. J. Bruegge, J. E. Conel, R. O. Green, J. S. Margolis, R. G. Holm, G. Toon, “Water vapor column abundance retrievals during FIFE,” J. Geophys. Res. 97, 18,759–18,768 (1992).
[CrossRef]

Guzzi, R.

Halthore, R. N.

C. J. Bruegge, R. N. Halthore, B. Markham, M. Spanner, R. Wrigley, “Aerosol optical depth retrievals over the Konza Prairie,” J. Geophys. Res. 97, 18,743–18,758 (1992).
[CrossRef]

R. N. Halthore, C. J. Bruegge, B. Markham, “Aerosol optical thickness measurements during FIFE’89,” in Symposium on FIFE (American Meteorological Society, Anaheim, Calif., 1990), pp. 121–125.

Herman, B.

J. A. Reagan, K. Thome, B. Herman, R. Gall, “Water vapor measurements in the 0.94 micron absorption band: calibration, measurements and data applications,” presented at the IGARSS ’87 Symposium, Ann Arbor, Mich., 18–21 May 1987.

Herman, B. M.

P. B. Russell, J. M. Livingston, E. G. Dutton, R. F. Puschel, J. A. Reagan, T. E. Defoor, M. A. Box, D. Allen, P. Pilewski, B. M. Herman, S. A. Kinne, D. J. Hofmann, “Pinatubo and pre-Pinatubo optical-depth spectra: Mauna Loa measurements, comparisons, inferred particle size distributions, radiative effects, and relationship to lidar data,” J. Geophys. Res. 98, 22,969–22,985 (1993).
[CrossRef]

J. A. Reagan, L. W. Thomason, B. M. Herman, J. M. Palmer, “Assessment of atmospheric limitations on the determination of the solar spectral constant from ground-based spectroradiometer measurements,” IEEE Trans. Geosci. Remote Sensing 24, 258–266 (1986).
[CrossRef]

L. W. Thomason, B. M. Herman, J. A. Reagan, “The effect of atmospheric attenuators with structured vertical distributions on air mass determinations and Langley plot analyses,” J. Atmos. Sci. 40, 1851–1854 (1983).
[CrossRef]

J. A. Reagan, I. C. Scott-Fleming, B. M. Herman, R. M. Schotland, “Recovery of spectral optical depth and zero-airmass Solar Spectral irradiance under conditions of temporally varying optical depth,” in International Geoscience and Remote Sensing Symposium (European Space Agency, Noordwijk, The Netherlands, 1984), pp. 455–459.

M. A. Box, B. M. Herman, “Bandwidth, scattered light, and temporal variability effects in spectral solar radiometry,” in Proceedings of the 4th Conference on Atmospheric Radiation (American Meteorological Society, Anaheim, Calif., 1981), pp. 103–107.

Hofmann, D. J.

P. B. Russell, J. M. Livingston, E. G. Dutton, R. F. Puschel, J. A. Reagan, T. E. Defoor, M. A. Box, D. Allen, P. Pilewski, B. M. Herman, S. A. Kinne, D. J. Hofmann, “Pinatubo and pre-Pinatubo optical-depth spectra: Mauna Loa measurements, comparisons, inferred particle size distributions, radiative effects, and relationship to lidar data,” J. Geophys. Res. 98, 22,969–22,985 (1993).
[CrossRef]

Holm, R. G.

C. J. Bruegge, J. E. Conel, R. O. Green, J. S. Margolis, R. G. Holm, G. Toon, “Water vapor column abundance retrievals during FIFE,” J. Geophys. Res. 97, 18,759–18,768 (1992).
[CrossRef]

Huber, M.

M. Huber, “Gerätetechnische Adaption eines hochauflösenden Doppelmonochromators zur Messung solarer UV-Spektren und des atmosphärischen Ozons,” Ph.D. dissertation (Institute for Medical Physics, University of Innsbruck, Innsbruck, Austria, 1994).

Inn, E. C. Y.

Kasten, F.

F. Kasten, A. T. Young, “Revised optical air mass tables and approximation formula,” Appl. Opt. 28, 4735–4738 (1989).
[CrossRef] [PubMed]

F. Kasten, “A new table and approximation formula for relative optical air mass,” Arch. Meteorol. Geophys. Bioklimatol. Ser. B 14, 206–223 (1965).
[CrossRef]

Kinne, S. A.

P. B. Russell, J. M. Livingston, E. G. Dutton, R. F. Puschel, J. A. Reagan, T. E. Defoor, M. A. Box, D. Allen, P. Pilewski, B. M. Herman, S. A. Kinne, D. J. Hofmann, “Pinatubo and pre-Pinatubo optical-depth spectra: Mauna Loa measurements, comparisons, inferred particle size distributions, radiative effects, and relationship to lidar data,” J. Geophys. Res. 98, 22,969–22,985 (1993).
[CrossRef]

Kneizys, F. X.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwind, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to lowtrant 7,” Environ. Res. Papers 1010 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Bedford, Mass., 01731.

Labs, D.

H. Neckel, D. Labs, “The solar radiation between 3300 and 12500 Å,” Solar Phys. 90, 205–258 (1984).
[CrossRef]

Lea, T. K.

LeBaron, B. A.

B. A. LeBaron, J. J. Michalsky, “Ozone measurement using the Chappuis band in the visible spectral region,” in Proceedings of the International Radiation Symposium ’88, J. Lenoble, J. F. Geleyn, eds. (Deepak, Hampton, Va., 1988), pp. 519–522.

Livingston, J. M.

P. B. Russell, J. M. Livingston, E. G. Dutton, R. F. Puschel, J. A. Reagan, T. E. Defoor, M. A. Box, D. Allen, P. Pilewski, B. M. Herman, S. A. Kinne, D. J. Hofmann, “Pinatubo and pre-Pinatubo optical-depth spectra: Mauna Loa measurements, comparisons, inferred particle size distributions, radiative effects, and relationship to lidar data,” J. Geophys. Res. 98, 22,969–22,985 (1993).
[CrossRef]

Maracci, G. C.

Marani, S.

Margolis, J. S.

C. J. Bruegge, J. E. Conel, R. O. Green, J. S. Margolis, R. G. Holm, G. Toon, “Water vapor column abundance retrievals during FIFE,” J. Geophys. Res. 97, 18,759–18,768 (1992).
[CrossRef]

Markham, B.

C. J. Bruegge, R. N. Halthore, B. Markham, M. Spanner, R. Wrigley, “Aerosol optical depth retrievals over the Konza Prairie,” J. Geophys. Res. 97, 18,743–18,758 (1992).
[CrossRef]

R. N. Halthore, C. J. Bruegge, B. Markham, “Aerosol optical thickness measurements during FIFE’89,” in Symposium on FIFE (American Meteorological Society, Anaheim, Calif., 1990), pp. 121–125.

McArthur, L. J. B.

N. T. O’Neill, A. Royer, P. Coté, L. J. B. McArthur, “Relations between optically derived aerosol parameters, humidity and air-quality data in an urban atmosphere,” J. Appl. Meteorol 32, 1484–1498 (1993).
[CrossRef]

Meeus, J.

J. Meeus, Astronomische Algorithmen (Barth-Verlag, Berlin, 1992).

Michalsky, J. J.

B. A. LeBaron, J. J. Michalsky, “Ozone measurement using the Chappuis band in the visible spectral region,” in Proceedings of the International Radiation Symposium ’88, J. Lenoble, J. F. Geleyn, eds. (Deepak, Hampton, Va., 1988), pp. 519–522.

Miller, J. R.

Moortgat, G. K.

W. Schneider, G. K. Moortgat, G. S. Tyndall, J. P. Burrows, “Absorption cross-sections of NO2 in the UV and visible region (200–700 nm) at 298 K,” J. Photochem. Photobiol. A 40, 195–217 (1987).
[CrossRef]

Nakajima, T.

Neckel, H.

H. Neckel, D. Labs, “The solar radiation between 3300 and 12500 Å,” Solar Phys. 90, 205–258 (1984).
[CrossRef]

O’Neill, N. T.

N. T. O’Neill, A. Royer, P. Coté, L. J. B. McArthur, “Relations between optically derived aerosol parameters, humidity and air-quality data in an urban atmosphere,” J. Appl. Meteorol 32, 1484–1498 (1993).
[CrossRef]

N. T. O’Neill, J. R. Miller, “Combined solar aureole and solar beam extinction measurements,” Appl. Opt. 23, 3691–3704 (1984).
[CrossRef]

Palmer, J. M.

J. A. Reagan, L. W. Thomason, B. M. Herman, J. M. Palmer, “Assessment of atmospheric limitations on the determination of the solar spectral constant from ground-based spectroradiometer measurements,” IEEE Trans. Geosci. Remote Sensing 24, 258–266 (1986).
[CrossRef]

Peter, R.

R. Peter, B. Schmid, “Comparison of columnar water vapor determined from microwave emission and solar transmission measurements,” in Topical Symposium on Combined Optical-Microwave Earth and Atmosphere Sensing (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1993), pp. 193–197.
[CrossRef]

Pilewski, P.

P. B. Russell, J. M. Livingston, E. G. Dutton, R. F. Puschel, J. A. Reagan, T. E. Defoor, M. A. Box, D. Allen, P. Pilewski, B. M. Herman, S. A. Kinne, D. J. Hofmann, “Pinatubo and pre-Pinatubo optical-depth spectra: Mauna Loa measurements, comparisons, inferred particle size distributions, radiative effects, and relationship to lidar data,” J. Geophys. Res. 98, 22,969–22,985 (1993).
[CrossRef]

Puschel, R. F.

P. B. Russell, J. M. Livingston, E. G. Dutton, R. F. Puschel, J. A. Reagan, T. E. Defoor, M. A. Box, D. Allen, P. Pilewski, B. M. Herman, S. A. Kinne, D. J. Hofmann, “Pinatubo and pre-Pinatubo optical-depth spectra: Mauna Loa measurements, comparisons, inferred particle size distributions, radiative effects, and relationship to lidar data,” J. Geophys. Res. 98, 22,969–22,985 (1993).
[CrossRef]

Reagan, J. A.

P. B. Russell, J. M. Livingston, E. G. Dutton, R. F. Puschel, J. A. Reagan, T. E. Defoor, M. A. Box, D. Allen, P. Pilewski, B. M. Herman, S. A. Kinne, D. J. Hofmann, “Pinatubo and pre-Pinatubo optical-depth spectra: Mauna Loa measurements, comparisons, inferred particle size distributions, radiative effects, and relationship to lidar data,” J. Geophys. Res. 98, 22,969–22,985 (1993).
[CrossRef]

J. A. Reagan, L. W. Thomason, B. M. Herman, J. M. Palmer, “Assessment of atmospheric limitations on the determination of the solar spectral constant from ground-based spectroradiometer measurements,” IEEE Trans. Geosci. Remote Sensing 24, 258–266 (1986).
[CrossRef]

L. W. Thomason, B. M. Herman, J. A. Reagan, “The effect of atmospheric attenuators with structured vertical distributions on air mass determinations and Langley plot analyses,” J. Atmos. Sci. 40, 1851–1854 (1983).
[CrossRef]

J. A. Reagan, I. C. Scott-Fleming, B. M. Herman, R. M. Schotland, “Recovery of spectral optical depth and zero-airmass Solar Spectral irradiance under conditions of temporally varying optical depth,” in International Geoscience and Remote Sensing Symposium (European Space Agency, Noordwijk, The Netherlands, 1984), pp. 455–459.

J. A. Reagan, K. Thome, B. Herman, R. Gall, “Water vapor measurements in the 0.94 micron absorption band: calibration, measurements and data applications,” presented at the IGARSS ’87 Symposium, Ann Arbor, Mich., 18–21 May 1987.

Reddy, P.

E. G. Dutton, P. Reddy, S. Ryan, J. DeLuisi, “Features and effects of aerosol optical depth observed at Mauna Loa, Hawaii: 1982–1992,” J. Geophys. Res. 99, 8295–8306 (1994).
[CrossRef]

Riordan, C.

R. E. Bird, C. Riordan, “Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the Earth’s surface for cloudless atmospheres,” J. Clim. Appl. Meteorol. 25, 87–97 (1986).
[CrossRef]

Royer, A.

N. T. O’Neill, A. Royer, P. Coté, L. J. B. McArthur, “Relations between optically derived aerosol parameters, humidity and air-quality data in an urban atmosphere,” J. Appl. Meteorol 32, 1484–1498 (1993).
[CrossRef]

Russell, P. B.

P. B. Russell, J. M. Livingston, E. G. Dutton, R. F. Puschel, J. A. Reagan, T. E. Defoor, M. A. Box, D. Allen, P. Pilewski, B. M. Herman, S. A. Kinne, D. J. Hofmann, “Pinatubo and pre-Pinatubo optical-depth spectra: Mauna Loa measurements, comparisons, inferred particle size distributions, radiative effects, and relationship to lidar data,” J. Geophys. Res. 98, 22,969–22,985 (1993).
[CrossRef]

Ryan, S.

E. G. Dutton, P. Reddy, S. Ryan, J. DeLuisi, “Features and effects of aerosol optical depth observed at Mauna Loa, Hawaii: 1982–1992,” J. Geophys. Res. 99, 8295–8306 (1994).
[CrossRef]

Saunders, R. D.

R. D. Saunders, J. B. Shumaker, “The 1973 NBS scale of spectral irradiance,” Natl. Bur. Stand. Tech. Note 594-13 (1977).

Schmid, B.

R. Peter, B. Schmid, “Comparison of columnar water vapor determined from microwave emission and solar transmission measurements,” in Topical Symposium on Combined Optical-Microwave Earth and Atmosphere Sensing (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1993), pp. 193–197.
[CrossRef]

Schneider, W.

W. Schneider, G. K. Moortgat, G. S. Tyndall, J. P. Burrows, “Absorption cross-sections of NO2 in the UV and visible region (200–700 nm) at 298 K,” J. Photochem. Photobiol. A 40, 195–217 (1987).
[CrossRef]

Schotland, R. M.

R. M. Schotland, T. K. Lea, “Bias in a solar constant determination by the Langley method due to structured atmospheric aerosol,” Appl. Opt. 25, 2486–2491 (1986).
[CrossRef] [PubMed]

J. A. Reagan, I. C. Scott-Fleming, B. M. Herman, R. M. Schotland, “Recovery of spectral optical depth and zero-airmass Solar Spectral irradiance under conditions of temporally varying optical depth,” in International Geoscience and Remote Sensing Symposium (European Space Agency, Noordwijk, The Netherlands, 1984), pp. 455–459.

Scott-Fleming, I. C.

J. A. Reagan, I. C. Scott-Fleming, B. M. Herman, R. M. Schotland, “Recovery of spectral optical depth and zero-airmass Solar Spectral irradiance under conditions of temporally varying optical depth,” in International Geoscience and Remote Sensing Symposium (European Space Agency, Noordwijk, The Netherlands, 1984), pp. 455–459.

Selby, J. E. A.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwind, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to lowtrant 7,” Environ. Res. Papers 1010 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Bedford, Mass., 01731.

Shaw, G. E.

Shettle, E. P.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwind, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to lowtrant 7,” Environ. Res. Papers 1010 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Bedford, Mass., 01731.

Shiobara, M.

Shumaker, J. B.

R. D. Saunders, J. B. Shumaker, “The 1973 NBS scale of spectral irradiance,” Natl. Bur. Stand. Tech. Note 594-13 (1977).

Siccardi, A.

Simon, P. C.

M. van Roozendael, M. De Mazière, P. C. Simon, “Ground-based visible measurements at the Jungfraujoch Station since 1990,” J. Quant. Spectrosc. Radiat. Transfer 52, 231–240 (1994).
[CrossRef]

Smith, E. V. P.

E. V. P. Smith, D. M. Gottlieb, “Solar flux and its variations,” Space Sci. Rev. 16, 771–802 (1974).
[CrossRef]

Spanner, M.

C. J. Bruegge, R. N. Halthore, B. Markham, M. Spanner, R. Wrigley, “Aerosol optical depth retrievals over the Konza Prairie,” J. Geophys. Res. 97, 18,743–18,758 (1992).
[CrossRef]

Tanaka, M.

Tanaka, Y.

Thomason, L. W.

J. A. Reagan, L. W. Thomason, B. M. Herman, J. M. Palmer, “Assessment of atmospheric limitations on the determination of the solar spectral constant from ground-based spectroradiometer measurements,” IEEE Trans. Geosci. Remote Sensing 24, 258–266 (1986).
[CrossRef]

L. W. Thomason, B. M. Herman, J. A. Reagan, “The effect of atmospheric attenuators with structured vertical distributions on air mass determinations and Langley plot analyses,” J. Atmos. Sci. 40, 1851–1854 (1983).
[CrossRef]

Thome, K.

J. A. Reagan, K. Thome, B. Herman, R. Gall, “Water vapor measurements in the 0.94 micron absorption band: calibration, measurements and data applications,” presented at the IGARSS ’87 Symposium, Ann Arbor, Mich., 18–21 May 1987.

Tomasi, C.

Toon, G.

C. J. Bruegge, J. E. Conel, R. O. Green, J. S. Margolis, R. G. Holm, G. Toon, “Water vapor column abundance retrievals during FIFE,” J. Geophys. Res. 97, 18,759–18,768 (1992).
[CrossRef]

Tyndall, G. S.

W. Schneider, G. K. Moortgat, G. S. Tyndall, J. P. Burrows, “Absorption cross-sections of NO2 in the UV and visible region (200–700 nm) at 298 K,” J. Photochem. Photobiol. A 40, 195–217 (1987).
[CrossRef]

van Roozendael, M.

M. van Roozendael, M. De Mazière, P. C. Simon, “Ground-based visible measurements at the Jungfraujoch Station since 1990,” J. Quant. Spectrosc. Radiat. Transfer 52, 231–240 (1994).
[CrossRef]

Vitale, V.

Volz, F. E.

F. E. Volz, “Photometer mit Selen-Photoelement zur spektralen Messung der Sonnenstrahlung und zur Bestimmmung der Wellenlängenabhängigkeit der Dunsttrübung,” Arch. Meteorol. Geophys. Bioklimatol. Ser. B 10, 100–131 (1959).
[CrossRef]

Wehrli, Ch.

Ch. Wehrli, C. Fröhlich, “Solar spectral irradiance measurements at 386 nm, 500 nm and 778 nm,” Metrologia 28, 285–289 (1991).
[CrossRef]

Ch. Wehrli, “Solar spectral irradiance measurements with sunphotometers,” in Proceedings from Workshop on Solar Electromagnetic Radiation Study for Solar Cycle 22, R. F. Donnelly, ed. (National Oceanic and Atmospheric Administration, Washington, D.C., 1992), pp. 54–61.

Ch. Wehrli, “Extraterrestrial solar spectrum,” Publ. 615 (Physikalisch-Meteorologisces Observatorium Davos, Davos, Switzerland, 1985).

Wrigley, R.

C. J. Bruegge, R. N. Halthore, B. Markham, M. Spanner, R. Wrigley, “Aerosol optical depth retrievals over the Konza Prairie,” J. Geophys. Res. 97, 18,743–18,758 (1992).
[CrossRef]

Young, A. T.

F. Kasten, A. T. Young, “Revised optical air mass tables and approximation formula,” Appl. Opt. 28, 4735–4738 (1989).
[CrossRef] [PubMed]

A. T. Young, “High-resolution photometry of a thin planetary atmosphere,” Icarus 11, 1–23 (1969).
[CrossRef]

Appl. Opt. (8)

Arch. Meteorol. Geophys. Bioklimatol. Ser. B (2)

F. E. Volz, “Photometer mit Selen-Photoelement zur spektralen Messung der Sonnenstrahlung und zur Bestimmmung der Wellenlängenabhängigkeit der Dunsttrübung,” Arch. Meteorol. Geophys. Bioklimatol. Ser. B 10, 100–131 (1959).
[CrossRef]

F. Kasten, “A new table and approximation formula for relative optical air mass,” Arch. Meteorol. Geophys. Bioklimatol. Ser. B 14, 206–223 (1965).
[CrossRef]

Icarus (1)

A. T. Young, “High-resolution photometry of a thin planetary atmosphere,” Icarus 11, 1–23 (1969).
[CrossRef]

IEEE Trans. Geosci. Remote Sensing (1)

J. A. Reagan, L. W. Thomason, B. M. Herman, J. M. Palmer, “Assessment of atmospheric limitations on the determination of the solar spectral constant from ground-based spectroradiometer measurements,” IEEE Trans. Geosci. Remote Sensing 24, 258–266 (1986).
[CrossRef]

J. Appl. Meteorol (1)

N. T. O’Neill, A. Royer, P. Coté, L. J. B. McArthur, “Relations between optically derived aerosol parameters, humidity and air-quality data in an urban atmosphere,” J. Appl. Meteorol 32, 1484–1498 (1993).
[CrossRef]

J. Atmos. Sci. (1)

L. W. Thomason, B. M. Herman, J. A. Reagan, “The effect of atmospheric attenuators with structured vertical distributions on air mass determinations and Langley plot analyses,” J. Atmos. Sci. 40, 1851–1854 (1983).
[CrossRef]

J. Clim. Appl. Meteorol. (1)

R. E. Bird, C. Riordan, “Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the Earth’s surface for cloudless atmospheres,” J. Clim. Appl. Meteorol. 25, 87–97 (1986).
[CrossRef]

J. Geophys. Res. (4)

C. J. Bruegge, R. N. Halthore, B. Markham, M. Spanner, R. Wrigley, “Aerosol optical depth retrievals over the Konza Prairie,” J. Geophys. Res. 97, 18,743–18,758 (1992).
[CrossRef]

P. B. Russell, J. M. Livingston, E. G. Dutton, R. F. Puschel, J. A. Reagan, T. E. Defoor, M. A. Box, D. Allen, P. Pilewski, B. M. Herman, S. A. Kinne, D. J. Hofmann, “Pinatubo and pre-Pinatubo optical-depth spectra: Mauna Loa measurements, comparisons, inferred particle size distributions, radiative effects, and relationship to lidar data,” J. Geophys. Res. 98, 22,969–22,985 (1993).
[CrossRef]

C. J. Bruegge, J. E. Conel, R. O. Green, J. S. Margolis, R. G. Holm, G. Toon, “Water vapor column abundance retrievals during FIFE,” J. Geophys. Res. 97, 18,759–18,768 (1992).
[CrossRef]

E. G. Dutton, P. Reddy, S. Ryan, J. DeLuisi, “Features and effects of aerosol optical depth observed at Mauna Loa, Hawaii: 1982–1992,” J. Geophys. Res. 99, 8295–8306 (1994).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Photochem. Photobiol. A (1)

W. Schneider, G. K. Moortgat, G. S. Tyndall, J. P. Burrows, “Absorption cross-sections of NO2 in the UV and visible region (200–700 nm) at 298 K,” J. Photochem. Photobiol. A 40, 195–217 (1987).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

M. van Roozendael, M. De Mazière, P. C. Simon, “Ground-based visible measurements at the Jungfraujoch Station since 1990,” J. Quant. Spectrosc. Radiat. Transfer 52, 231–240 (1994).
[CrossRef]

Metrologia (1)

Ch. Wehrli, C. Fröhlich, “Solar spectral irradiance measurements at 386 nm, 500 nm and 778 nm,” Metrologia 28, 285–289 (1991).
[CrossRef]

Solar Phys. (1)

H. Neckel, D. Labs, “The solar radiation between 3300 and 12500 Å,” Solar Phys. 90, 205–258 (1984).
[CrossRef]

Space Sci. Rev. (1)

E. V. P. Smith, D. M. Gottlieb, “Solar flux and its variations,” Space Sci. Rev. 16, 771–802 (1974).
[CrossRef]

Other (18)

Ch. Wehrli, “Solar spectral irradiance measurements with sunphotometers,” in Proceedings from Workshop on Solar Electromagnetic Radiation Study for Solar Cycle 22, R. F. Donnelly, ed. (National Oceanic and Atmospheric Administration, Washington, D.C., 1992), pp. 54–61.

J. A. Reagan, I. C. Scott-Fleming, B. M. Herman, R. M. Schotland, “Recovery of spectral optical depth and zero-airmass Solar Spectral irradiance under conditions of temporally varying optical depth,” in International Geoscience and Remote Sensing Symposium (European Space Agency, Noordwijk, The Netherlands, 1984), pp. 455–459.

J. A. Reagan, K. Thome, B. Herman, R. Gall, “Water vapor measurements in the 0.94 micron absorption band: calibration, measurements and data applications,” presented at the IGARSS ’87 Symposium, Ann Arbor, Mich., 18–21 May 1987.

R. D. Saunders, J. B. Shumaker, “The 1973 NBS scale of spectral irradiance,” Natl. Bur. Stand. Tech. Note 594-13 (1977).

P. C. Simon, ed., “European stratospheric monitoring stations,” Progress Rep. (Aeronomy Institute, Brussels, Belgium, 1991).

R. Peter, B. Schmid, “Comparison of columnar water vapor determined from microwave emission and solar transmission measurements,” in Topical Symposium on Combined Optical-Microwave Earth and Atmosphere Sensing (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1993), pp. 193–197.
[CrossRef]

Instruments and Apparatus, Part 1. Measurement Uncertainty. ANSI/ASME Performance Test Codes 19.1-1985 (American Society of Mechanical Engineers, New York, 1986).

M. A. Box, B. M. Herman, “Bandwidth, scattered light, and temporal variability effects in spectral solar radiometry,” in Proceedings of the 4th Conference on Atmospheric Radiation (American Meteorological Society, Anaheim, Calif., 1981), pp. 103–107.

M. Huber, “Gerätetechnische Adaption eines hochauflösenden Doppelmonochromators zur Messung solarer UV-Spektren und des atmosphärischen Ozons,” Ph.D. dissertation (Institute for Medical Physics, University of Innsbruck, Innsbruck, Austria, 1994).

P. Duffett-Smith, “Practical astronomy with your calculator,” 3rd ed. (Cambridge U. Press, Cambridge, England, 1988).

J. Meeus, Astronomische Algorithmen (Barth-Verlag, Berlin, 1992).

Messung der Lufttrübung durch Aerosolpartikel mit Sonnen-photometern, VDI 3786, Blatt 10, (VDI-Richtlinien, Umweltmeteorologie, Verein Deutscher Ingenieure, Graf-Recke-Strasse 84, 4000 Düsseldorf 1, 1994).

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwind, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to lowtrant 7,” Environ. Res. Papers 1010 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Bedford, Mass., 01731.

B. A. LeBaron, J. J. Michalsky, “Ozone measurement using the Chappuis band in the visible spectral region,” in Proceedings of the International Radiation Symposium ’88, J. Lenoble, J. F. Geleyn, eds. (Deepak, Hampton, Va., 1988), pp. 519–522.

E. Dutton, J. DeLuisi, “Results of a sunphotometer intercomparison held at Boulder, 19 October to 16 December 1981,” NOAA Tech. Mem. ERL ARL-114 (National Oceanic and Atmospheric Administration, Washington, D.C., 1982).

World Meteorological Organization, “Recent progress in sun photometry. Determination of the aerosol optical depth,” Environmental Pollution Monitoring and Research Program 43, obtainable as WMO/TD 143 (World Meteorological Organization, Geneva, Switzerland, 1986).

R. N. Halthore, C. J. Bruegge, B. Markham, “Aerosol optical thickness measurements during FIFE’89,” in Symposium on FIFE (American Meteorological Society, Anaheim, Calif., 1990), pp. 121–125.

Ch. Wehrli, “Extraterrestrial solar spectrum,” Publ. 615 (Physikalisch-Meteorologisces Observatorium Davos, Davos, Switzerland, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Example Langley plot for data of the 500-nm channel acquired on 30 October 1993 at Jungfraujoch. (b) Residuals with respect to the straight-line fit shown in (a). Analysis starts at aerosol air mass m a (θ) = 7.8 in the morning and terminates at noon, when m a (θ) = 2.

Fig. 2
Fig. 2

V 0(λ) values for λ = 675 nm retrieved from Langley plots at Jungfraujoch, plotted against time. The vertical bars depict the statistical error of V 0(λ) derived from the standard deviation of the Langley plot intercept. The dashed line represents a least-squares fit through the data having a slope of −0.65 ± 0.10 mV/day.

Fig. 3
Fig. 3

(a) Modified Langley plot for λ = 946 nm. Data acquired on 8 November 1993 at Jungfraujoch. (b) Residuals with respect to the straight-line fit shown in (a).

Fig. 4
Fig. 4

Comparison of optical window transmittance measured after the Jungfraujoch campaign with theoretical values of BK-7 glass.

Fig. 5
Fig. 5

Relative changes of calibration constant V 0(λ) determined by means of standard-lamp calibrations. SPM 15 (500, 862, and 946 nm) has been calibrated three times, and SPM 20 (610, 675, and 1024 nm) has been calibrated twice. The results are normalized to the instruments’ first calibration (the values for λ = 610 nm not shown in the plot are identical with those of λ = 675 nm).

Fig. 6
Fig. 6

Relative differences between Langley and lamp determinations of V 0(λ). The error bars depict the absolute error of the Jungfraujoch Langley plots. The dashed lines give the 3% absolute calibration error, using the standard irradiance lamp.

Tables (5)

Tables Icon

Table 1 Characteristics of SPM-2000 Sun Photometers (S/N 15 and 20), Including Band-Weighted Ozone and Nitrogen Dioxide Columnar Absorption Coefficients k 3(λ) and k 2(λ)

Tables Icon

Table 2 Jungfraujoch Langley-Plot Calibration Results

Tables Icon

Table 3 Error Analysis Summary for Jungfraujoch Langley-Plot Calibrations

Tables Icon

Table 4 Results from Standard Irradiance Lamp Calibrations Performed at the WRC for CSEM SPM-2000 S/N 15 and 20

Tables Icon

Table 5 Comparison of Calibration Constants V 0(λ) Derived from Langley Plots Performed at Jungfraujoch and from Standard Irradiance Lamps at the WRC

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

V ( λ ) = V 0 ( λ ) R - 2 exp [ - m ( θ ) τ ( λ ) ] ,
ln V ( λ ) = ln [ V 0 ( λ ) R - 2 ] - m ( θ ) τ ( λ ) .
τ ( λ ) = τ R ( λ ) + τ 3 ( λ ) + τ 2 ( λ ) + τ a ( λ ) ,
V ( λ ) = V 0 ( λ ) R - 2 exp [ - i m i ( θ ) τ i ( λ ) ] ,
V ( λ ) = V 0 ( λ ) R - 2 exp [ - m R ( θ ) τ R ( λ ) - m 3 ( θ ) τ 3 ( λ ) - m 2 ( θ ) τ 2 ( λ ) - m a ( θ ) τ a ( λ ) ] .
V a ( λ ) V ( λ ) exp [ m R ( θ ) τ R ( λ ) + m 3 ( θ ) τ 3 ( λ ) + m 2 ( θ ) τ 2 ( λ ) ] .
ln V a ( λ ) = ln [ V 0 ( λ ) R - 2 ] - m a ( θ ) τ a ( λ )
τ R ( λ ) = 0.008553 p p 0 λ - 4.07
τ 3 ( λ ) = k 3 ( λ ) C 3 ,
τ 3 ( λ ) = k 2 ( λ ) C 2 ,
m ( θ ) τ ( λ ) m ( θ ) τ scat ( λ ) + a [ m ( θ ) u ] b ,
ln V ( λ ) + m ( θ ) τ scat ( λ ) = ln [ V 0 ( λ ) R - 2 ] - a [ m ( θ ) u ] b .
ln V ( λ ) + m R ( θ ) τ R ( λ ) + m a ( θ ) τ a ( λ ) = ln [ V 0 ( λ ) R - 2 ] - a [ m w ( θ ) u ] b .
V 0 ( λ ) = V L ( λ ) f ( λ ) ,
f ( λ ) = λ 1 λ 2 E s ( λ ) S ( λ ) d λ λ 1 λ 2 E L ( λ ) S ( λ ) d λ .
T ( λ ) = T I ( λ ) 2 n ( λ ) n 2 ( λ ) + 1 ,
Δ τ ( λ ) = ln [ 1 + Δ V 0 ( λ ) ] / V 0 ( λ ) ] m ( θ ) ,

Metrics