Abstract

We present the results of a study that identifies a photomultiplier tube (PMT), divider networks, and gating circuitry for use in the current detection mode, in which the specific objectives were to hold variations in both signal gain over a 25-μs gate period and signal linearity up to 20 mA to less than ±0.1%. The study, aimed at optimizing the performance in a nadir-looking airborne UV differential absorption lidar, is sufficiently general to apply to other critical gated or pulsed PMT applications in which performance at the 0.1% level is required. Signal-induced gain increases peculiar to pulsed or gated signals from PMT’s with BeCu dynodes that can have values between 1 and 10% over 25 μs were reduced to less than 0.1% by the use of a 2-in. (5.08-cm)-diameter PMT (EMI 9214) with CsSb dynodes. Compliance with the linearity requirement was achieved for gated signals up to 8 mA at a current gain of ~107 with the EMI 9214 PMT controlled by a resistive divider network with an inverted taper, in which the linearity data showed no tendency toward overlinearity caused by either space charge effects or induced divider-network voltage changes.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. P. Bristow, D. E. Diebel, D. H. Bundy, C. M. Edmonds, R. M. Turner, J. L. McElroy, “Development of an airborne excimer-based UV-DIAL for monitoring ozone and sulfur dioxide in the lower troposphere,” in Proceedings of the Conference on Remote Sensing Atmospheric Chemistry, J. L. McElroy, R. J. McNeal, eds. (Society of Photo-Optical Instrumentation Engineers, Bellvue, Washington, 1991), Vol. 1491, p. 68.
  2. H. Moosmüsller, R. J. Alvarez, R. M. Jorgensen, C. M. Edmonds, D. H. Bundy, D. E. Diebel, M. P. Bristow, J. L. McElroy, “An airborne lidar system for tropospheric ozone measurement,” in Proceedings of the 86th Annual Meeting of the Air and Waste Management Association (Air and Waste Management Association, Pittsburgh, Pa., 1993).
  3. R. W. Engstrom, RCA Photomultiplier Handbook, publ. PMT-62 (available from Burle Industries Inc., Lancaster, Pa., 1980, as publ. TP-136).
  4. J. P. Boutot, J. Nussli, D. Vallat, “Recent trends in photomultipliers for nuclear physics,” in Advances in Electronics and Electron Physics, P. W. Hawkes, ed. (Academic, New York, 1983), Vol. 60, pp. 223–305.
    [CrossRef]
  5. Photomultiplier Catalogue, publ. P001/E79 (Thorn EMI Electron Tubes Ltd., Ruislip, Middlesex, UK, 1979).
  6. J. D. W. Barrick, “Gating characteristics of photomultiplier tubes for lidar applications,” NASA Tech. Mem. 87699 (Langley Research Center, Hampton, Va., 1986).
  7. H. Sang Lee, G. K. Schwemmer, C. L. Korb, M. Dombrowski, C. Prasad, “Gated photomultiplier response characterization for DIAL measurements,” Appl. Opt. 29, 3303–3315 (1990).
    [CrossRef]
  8. U. Farinelli, R. Malvano, “Pulsing of photomultipliers,” Rev. Sci. Instrum. 29, 699–701 (1958).
    [CrossRef]
  9. R. Wardle, “Gating photomultipliers,” Publ. R/P061 (Thorn EMI Electron Tubes Ltd., Ruislip, Middlesex, UK, 1982).
  10. D. S. Hanselman, R. Withnell, G. M. Hieftje, “Side-on photomultiplier gating system for Thompson scattering and laser-excited atomic fluorescence spectroscopy,” Appl. Spectrosc. 45, 1553–1560 (1991).
    [CrossRef]
  11. J. R. Herman, T. R. Londo, N. A. Rahman, B. G. Barisas, “Normally-on photomultiplier gating circuit with reduced post-gate artifacts for use in transient luminescence measurements,” Rev. Sci. Instrum. 63, 5454–5458 (1992).
    [CrossRef]
  12. T. E. Sisneros, “Measurement of short luminescence decay times,” Appl. Opt. 6, 417–420 (1967).
    [CrossRef] [PubMed]
  13. B. G. Barisas, M. D. Leuther, “Grid-gated photomultiplier photometer with subnanosecond time response,” Rev. Sci. Instrum. 51, 74–78 (1980).
    [CrossRef]
  14. L. Campbell, “Afterpulse measurement and correction,” Rev. Sci. Instrum. 63, 5794–5798 (1992).
    [CrossRef]
  15. I. S. McDermid, T. D. Walsh, “New lidar for the network for the detection of stratospheric change—Mauna Loa Observatory: initial results,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, DC., 1993), p. 276.
  16. W. H. Hunt, S. K. Poultney, “Testing the linearity of response of gated photomultipliers in wide dynamic range laser radar systems,” IEEE Trans. Nucl. Sci. NS-22, 116–120 (1975).
    [CrossRef]
  17. Y. Iikura, N. Sugimoto, Y. Sasano, H. Shimizu, “Improvement on lidar data processing for stratospheric aerosol measurements,” Appl. Opt. 26, 5299–5306 (1987).
    [CrossRef]
  18. M. DeVincenzi, G. Penso, A. Sciubba, A. Sposito, “Experimental study of non-linear effects on photomultiplier gain,” Nucl. Instrum. Meth. 225, 104–112 (1984).
    [CrossRef]
  19. V. N. Evdokimov, M. I. Mutafyan, “Short-term instability and stabilization of photomultiplier gain,” Instrum. Exp. Tech. 29, 900–904 (1986).
  20. S. Bianco, F. L. Fabbri, L. Passamonti, V. Russo, A. Spallone, A. Zallo, “A study of the short-term rate effect in Philips XP-2008 photomultiplier tubes,” Nucl. Instrum. Meth. A 301, 279–287 (1991).
  21. Photomultiplier Catalogue, publ. PMC/93 (Thorn EMI Electron Tubes Ltd., Ruislip, Middlesex, UK, 1993).
  22. A. K. Gupta, N. Nath, “Gain stability in high-current photomultipliers at high variable counting rates,” Nucl. Instrum. Meth. 53, 352–354 (1967).
    [CrossRef]
  23. J. M. Schonkeren, Photomultipliers (N. V. Philips’ Gloeilampenfabrieken, Eindhoven, The Netherlands, 1970).
  24. Photomultiplier Tube Catalogue, publ. D-PMT-CAT93 (Philips Photonics, Slatersville, R.I., 1993).

1992 (2)

J. R. Herman, T. R. Londo, N. A. Rahman, B. G. Barisas, “Normally-on photomultiplier gating circuit with reduced post-gate artifacts for use in transient luminescence measurements,” Rev. Sci. Instrum. 63, 5454–5458 (1992).
[CrossRef]

L. Campbell, “Afterpulse measurement and correction,” Rev. Sci. Instrum. 63, 5794–5798 (1992).
[CrossRef]

1991 (2)

S. Bianco, F. L. Fabbri, L. Passamonti, V. Russo, A. Spallone, A. Zallo, “A study of the short-term rate effect in Philips XP-2008 photomultiplier tubes,” Nucl. Instrum. Meth. A 301, 279–287 (1991).

D. S. Hanselman, R. Withnell, G. M. Hieftje, “Side-on photomultiplier gating system for Thompson scattering and laser-excited atomic fluorescence spectroscopy,” Appl. Spectrosc. 45, 1553–1560 (1991).
[CrossRef]

1990 (1)

1987 (1)

1986 (1)

V. N. Evdokimov, M. I. Mutafyan, “Short-term instability and stabilization of photomultiplier gain,” Instrum. Exp. Tech. 29, 900–904 (1986).

1984 (1)

M. DeVincenzi, G. Penso, A. Sciubba, A. Sposito, “Experimental study of non-linear effects on photomultiplier gain,” Nucl. Instrum. Meth. 225, 104–112 (1984).
[CrossRef]

1980 (1)

B. G. Barisas, M. D. Leuther, “Grid-gated photomultiplier photometer with subnanosecond time response,” Rev. Sci. Instrum. 51, 74–78 (1980).
[CrossRef]

1975 (1)

W. H. Hunt, S. K. Poultney, “Testing the linearity of response of gated photomultipliers in wide dynamic range laser radar systems,” IEEE Trans. Nucl. Sci. NS-22, 116–120 (1975).
[CrossRef]

1967 (2)

A. K. Gupta, N. Nath, “Gain stability in high-current photomultipliers at high variable counting rates,” Nucl. Instrum. Meth. 53, 352–354 (1967).
[CrossRef]

T. E. Sisneros, “Measurement of short luminescence decay times,” Appl. Opt. 6, 417–420 (1967).
[CrossRef] [PubMed]

1958 (1)

U. Farinelli, R. Malvano, “Pulsing of photomultipliers,” Rev. Sci. Instrum. 29, 699–701 (1958).
[CrossRef]

Alvarez, R. J.

H. Moosmüsller, R. J. Alvarez, R. M. Jorgensen, C. M. Edmonds, D. H. Bundy, D. E. Diebel, M. P. Bristow, J. L. McElroy, “An airborne lidar system for tropospheric ozone measurement,” in Proceedings of the 86th Annual Meeting of the Air and Waste Management Association (Air and Waste Management Association, Pittsburgh, Pa., 1993).

Barisas, B. G.

J. R. Herman, T. R. Londo, N. A. Rahman, B. G. Barisas, “Normally-on photomultiplier gating circuit with reduced post-gate artifacts for use in transient luminescence measurements,” Rev. Sci. Instrum. 63, 5454–5458 (1992).
[CrossRef]

B. G. Barisas, M. D. Leuther, “Grid-gated photomultiplier photometer with subnanosecond time response,” Rev. Sci. Instrum. 51, 74–78 (1980).
[CrossRef]

Barrick, J. D. W.

J. D. W. Barrick, “Gating characteristics of photomultiplier tubes for lidar applications,” NASA Tech. Mem. 87699 (Langley Research Center, Hampton, Va., 1986).

Bianco, S.

S. Bianco, F. L. Fabbri, L. Passamonti, V. Russo, A. Spallone, A. Zallo, “A study of the short-term rate effect in Philips XP-2008 photomultiplier tubes,” Nucl. Instrum. Meth. A 301, 279–287 (1991).

Boutot, J. P.

J. P. Boutot, J. Nussli, D. Vallat, “Recent trends in photomultipliers for nuclear physics,” in Advances in Electronics and Electron Physics, P. W. Hawkes, ed. (Academic, New York, 1983), Vol. 60, pp. 223–305.
[CrossRef]

Bristow, M. P.

M. P. Bristow, D. E. Diebel, D. H. Bundy, C. M. Edmonds, R. M. Turner, J. L. McElroy, “Development of an airborne excimer-based UV-DIAL for monitoring ozone and sulfur dioxide in the lower troposphere,” in Proceedings of the Conference on Remote Sensing Atmospheric Chemistry, J. L. McElroy, R. J. McNeal, eds. (Society of Photo-Optical Instrumentation Engineers, Bellvue, Washington, 1991), Vol. 1491, p. 68.

H. Moosmüsller, R. J. Alvarez, R. M. Jorgensen, C. M. Edmonds, D. H. Bundy, D. E. Diebel, M. P. Bristow, J. L. McElroy, “An airborne lidar system for tropospheric ozone measurement,” in Proceedings of the 86th Annual Meeting of the Air and Waste Management Association (Air and Waste Management Association, Pittsburgh, Pa., 1993).

Bundy, D. H.

H. Moosmüsller, R. J. Alvarez, R. M. Jorgensen, C. M. Edmonds, D. H. Bundy, D. E. Diebel, M. P. Bristow, J. L. McElroy, “An airborne lidar system for tropospheric ozone measurement,” in Proceedings of the 86th Annual Meeting of the Air and Waste Management Association (Air and Waste Management Association, Pittsburgh, Pa., 1993).

M. P. Bristow, D. E. Diebel, D. H. Bundy, C. M. Edmonds, R. M. Turner, J. L. McElroy, “Development of an airborne excimer-based UV-DIAL for monitoring ozone and sulfur dioxide in the lower troposphere,” in Proceedings of the Conference on Remote Sensing Atmospheric Chemistry, J. L. McElroy, R. J. McNeal, eds. (Society of Photo-Optical Instrumentation Engineers, Bellvue, Washington, 1991), Vol. 1491, p. 68.

Campbell, L.

L. Campbell, “Afterpulse measurement and correction,” Rev. Sci. Instrum. 63, 5794–5798 (1992).
[CrossRef]

DeVincenzi, M.

M. DeVincenzi, G. Penso, A. Sciubba, A. Sposito, “Experimental study of non-linear effects on photomultiplier gain,” Nucl. Instrum. Meth. 225, 104–112 (1984).
[CrossRef]

Diebel, D. E.

M. P. Bristow, D. E. Diebel, D. H. Bundy, C. M. Edmonds, R. M. Turner, J. L. McElroy, “Development of an airborne excimer-based UV-DIAL for monitoring ozone and sulfur dioxide in the lower troposphere,” in Proceedings of the Conference on Remote Sensing Atmospheric Chemistry, J. L. McElroy, R. J. McNeal, eds. (Society of Photo-Optical Instrumentation Engineers, Bellvue, Washington, 1991), Vol. 1491, p. 68.

H. Moosmüsller, R. J. Alvarez, R. M. Jorgensen, C. M. Edmonds, D. H. Bundy, D. E. Diebel, M. P. Bristow, J. L. McElroy, “An airborne lidar system for tropospheric ozone measurement,” in Proceedings of the 86th Annual Meeting of the Air and Waste Management Association (Air and Waste Management Association, Pittsburgh, Pa., 1993).

Dombrowski, M.

Edmonds, C. M.

H. Moosmüsller, R. J. Alvarez, R. M. Jorgensen, C. M. Edmonds, D. H. Bundy, D. E. Diebel, M. P. Bristow, J. L. McElroy, “An airborne lidar system for tropospheric ozone measurement,” in Proceedings of the 86th Annual Meeting of the Air and Waste Management Association (Air and Waste Management Association, Pittsburgh, Pa., 1993).

M. P. Bristow, D. E. Diebel, D. H. Bundy, C. M. Edmonds, R. M. Turner, J. L. McElroy, “Development of an airborne excimer-based UV-DIAL for monitoring ozone and sulfur dioxide in the lower troposphere,” in Proceedings of the Conference on Remote Sensing Atmospheric Chemistry, J. L. McElroy, R. J. McNeal, eds. (Society of Photo-Optical Instrumentation Engineers, Bellvue, Washington, 1991), Vol. 1491, p. 68.

Engstrom, R. W.

R. W. Engstrom, RCA Photomultiplier Handbook, publ. PMT-62 (available from Burle Industries Inc., Lancaster, Pa., 1980, as publ. TP-136).

Evdokimov, V. N.

V. N. Evdokimov, M. I. Mutafyan, “Short-term instability and stabilization of photomultiplier gain,” Instrum. Exp. Tech. 29, 900–904 (1986).

Fabbri, F. L.

S. Bianco, F. L. Fabbri, L. Passamonti, V. Russo, A. Spallone, A. Zallo, “A study of the short-term rate effect in Philips XP-2008 photomultiplier tubes,” Nucl. Instrum. Meth. A 301, 279–287 (1991).

Farinelli, U.

U. Farinelli, R. Malvano, “Pulsing of photomultipliers,” Rev. Sci. Instrum. 29, 699–701 (1958).
[CrossRef]

Gupta, A. K.

A. K. Gupta, N. Nath, “Gain stability in high-current photomultipliers at high variable counting rates,” Nucl. Instrum. Meth. 53, 352–354 (1967).
[CrossRef]

Hanselman, D. S.

Herman, J. R.

J. R. Herman, T. R. Londo, N. A. Rahman, B. G. Barisas, “Normally-on photomultiplier gating circuit with reduced post-gate artifacts for use in transient luminescence measurements,” Rev. Sci. Instrum. 63, 5454–5458 (1992).
[CrossRef]

Hieftje, G. M.

Hunt, W. H.

W. H. Hunt, S. K. Poultney, “Testing the linearity of response of gated photomultipliers in wide dynamic range laser radar systems,” IEEE Trans. Nucl. Sci. NS-22, 116–120 (1975).
[CrossRef]

Iikura, Y.

Jorgensen, R. M.

H. Moosmüsller, R. J. Alvarez, R. M. Jorgensen, C. M. Edmonds, D. H. Bundy, D. E. Diebel, M. P. Bristow, J. L. McElroy, “An airborne lidar system for tropospheric ozone measurement,” in Proceedings of the 86th Annual Meeting of the Air and Waste Management Association (Air and Waste Management Association, Pittsburgh, Pa., 1993).

Korb, C. L.

Leuther, M. D.

B. G. Barisas, M. D. Leuther, “Grid-gated photomultiplier photometer with subnanosecond time response,” Rev. Sci. Instrum. 51, 74–78 (1980).
[CrossRef]

Londo, T. R.

J. R. Herman, T. R. Londo, N. A. Rahman, B. G. Barisas, “Normally-on photomultiplier gating circuit with reduced post-gate artifacts for use in transient luminescence measurements,” Rev. Sci. Instrum. 63, 5454–5458 (1992).
[CrossRef]

Malvano, R.

U. Farinelli, R. Malvano, “Pulsing of photomultipliers,” Rev. Sci. Instrum. 29, 699–701 (1958).
[CrossRef]

McDermid, I. S.

I. S. McDermid, T. D. Walsh, “New lidar for the network for the detection of stratospheric change—Mauna Loa Observatory: initial results,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, DC., 1993), p. 276.

McElroy, J. L.

H. Moosmüsller, R. J. Alvarez, R. M. Jorgensen, C. M. Edmonds, D. H. Bundy, D. E. Diebel, M. P. Bristow, J. L. McElroy, “An airborne lidar system for tropospheric ozone measurement,” in Proceedings of the 86th Annual Meeting of the Air and Waste Management Association (Air and Waste Management Association, Pittsburgh, Pa., 1993).

M. P. Bristow, D. E. Diebel, D. H. Bundy, C. M. Edmonds, R. M. Turner, J. L. McElroy, “Development of an airborne excimer-based UV-DIAL for monitoring ozone and sulfur dioxide in the lower troposphere,” in Proceedings of the Conference on Remote Sensing Atmospheric Chemistry, J. L. McElroy, R. J. McNeal, eds. (Society of Photo-Optical Instrumentation Engineers, Bellvue, Washington, 1991), Vol. 1491, p. 68.

Moosmüsller, H.

H. Moosmüsller, R. J. Alvarez, R. M. Jorgensen, C. M. Edmonds, D. H. Bundy, D. E. Diebel, M. P. Bristow, J. L. McElroy, “An airborne lidar system for tropospheric ozone measurement,” in Proceedings of the 86th Annual Meeting of the Air and Waste Management Association (Air and Waste Management Association, Pittsburgh, Pa., 1993).

Mutafyan, M. I.

V. N. Evdokimov, M. I. Mutafyan, “Short-term instability and stabilization of photomultiplier gain,” Instrum. Exp. Tech. 29, 900–904 (1986).

Nath, N.

A. K. Gupta, N. Nath, “Gain stability in high-current photomultipliers at high variable counting rates,” Nucl. Instrum. Meth. 53, 352–354 (1967).
[CrossRef]

Nussli, J.

J. P. Boutot, J. Nussli, D. Vallat, “Recent trends in photomultipliers for nuclear physics,” in Advances in Electronics and Electron Physics, P. W. Hawkes, ed. (Academic, New York, 1983), Vol. 60, pp. 223–305.
[CrossRef]

Passamonti, L.

S. Bianco, F. L. Fabbri, L. Passamonti, V. Russo, A. Spallone, A. Zallo, “A study of the short-term rate effect in Philips XP-2008 photomultiplier tubes,” Nucl. Instrum. Meth. A 301, 279–287 (1991).

Penso, G.

M. DeVincenzi, G. Penso, A. Sciubba, A. Sposito, “Experimental study of non-linear effects on photomultiplier gain,” Nucl. Instrum. Meth. 225, 104–112 (1984).
[CrossRef]

Poultney, S. K.

W. H. Hunt, S. K. Poultney, “Testing the linearity of response of gated photomultipliers in wide dynamic range laser radar systems,” IEEE Trans. Nucl. Sci. NS-22, 116–120 (1975).
[CrossRef]

Prasad, C.

Rahman, N. A.

J. R. Herman, T. R. Londo, N. A. Rahman, B. G. Barisas, “Normally-on photomultiplier gating circuit with reduced post-gate artifacts for use in transient luminescence measurements,” Rev. Sci. Instrum. 63, 5454–5458 (1992).
[CrossRef]

Russo, V.

S. Bianco, F. L. Fabbri, L. Passamonti, V. Russo, A. Spallone, A. Zallo, “A study of the short-term rate effect in Philips XP-2008 photomultiplier tubes,” Nucl. Instrum. Meth. A 301, 279–287 (1991).

Sang Lee, H.

Sasano, Y.

Schonkeren, J. M.

J. M. Schonkeren, Photomultipliers (N. V. Philips’ Gloeilampenfabrieken, Eindhoven, The Netherlands, 1970).

Schwemmer, G. K.

Sciubba, A.

M. DeVincenzi, G. Penso, A. Sciubba, A. Sposito, “Experimental study of non-linear effects on photomultiplier gain,” Nucl. Instrum. Meth. 225, 104–112 (1984).
[CrossRef]

Shimizu, H.

Sisneros, T. E.

Spallone, A.

S. Bianco, F. L. Fabbri, L. Passamonti, V. Russo, A. Spallone, A. Zallo, “A study of the short-term rate effect in Philips XP-2008 photomultiplier tubes,” Nucl. Instrum. Meth. A 301, 279–287 (1991).

Sposito, A.

M. DeVincenzi, G. Penso, A. Sciubba, A. Sposito, “Experimental study of non-linear effects on photomultiplier gain,” Nucl. Instrum. Meth. 225, 104–112 (1984).
[CrossRef]

Sugimoto, N.

Turner, R. M.

M. P. Bristow, D. E. Diebel, D. H. Bundy, C. M. Edmonds, R. M. Turner, J. L. McElroy, “Development of an airborne excimer-based UV-DIAL for monitoring ozone and sulfur dioxide in the lower troposphere,” in Proceedings of the Conference on Remote Sensing Atmospheric Chemistry, J. L. McElroy, R. J. McNeal, eds. (Society of Photo-Optical Instrumentation Engineers, Bellvue, Washington, 1991), Vol. 1491, p. 68.

Vallat, D.

J. P. Boutot, J. Nussli, D. Vallat, “Recent trends in photomultipliers for nuclear physics,” in Advances in Electronics and Electron Physics, P. W. Hawkes, ed. (Academic, New York, 1983), Vol. 60, pp. 223–305.
[CrossRef]

Walsh, T. D.

I. S. McDermid, T. D. Walsh, “New lidar for the network for the detection of stratospheric change—Mauna Loa Observatory: initial results,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, DC., 1993), p. 276.

Wardle, R.

R. Wardle, “Gating photomultipliers,” Publ. R/P061 (Thorn EMI Electron Tubes Ltd., Ruislip, Middlesex, UK, 1982).

Withnell, R.

Zallo, A.

S. Bianco, F. L. Fabbri, L. Passamonti, V. Russo, A. Spallone, A. Zallo, “A study of the short-term rate effect in Philips XP-2008 photomultiplier tubes,” Nucl. Instrum. Meth. A 301, 279–287 (1991).

Appl. Opt. (3)

Appl. Spectrosc. (1)

IEEE Trans. Nucl. Sci. (1)

W. H. Hunt, S. K. Poultney, “Testing the linearity of response of gated photomultipliers in wide dynamic range laser radar systems,” IEEE Trans. Nucl. Sci. NS-22, 116–120 (1975).
[CrossRef]

Instrum. Exp. Tech. (1)

V. N. Evdokimov, M. I. Mutafyan, “Short-term instability and stabilization of photomultiplier gain,” Instrum. Exp. Tech. 29, 900–904 (1986).

Nucl. Instrum. Meth. (3)

S. Bianco, F. L. Fabbri, L. Passamonti, V. Russo, A. Spallone, A. Zallo, “A study of the short-term rate effect in Philips XP-2008 photomultiplier tubes,” Nucl. Instrum. Meth. A 301, 279–287 (1991).

A. K. Gupta, N. Nath, “Gain stability in high-current photomultipliers at high variable counting rates,” Nucl. Instrum. Meth. 53, 352–354 (1967).
[CrossRef]

M. DeVincenzi, G. Penso, A. Sciubba, A. Sposito, “Experimental study of non-linear effects on photomultiplier gain,” Nucl. Instrum. Meth. 225, 104–112 (1984).
[CrossRef]

Rev. Sci. Instrum. (4)

U. Farinelli, R. Malvano, “Pulsing of photomultipliers,” Rev. Sci. Instrum. 29, 699–701 (1958).
[CrossRef]

J. R. Herman, T. R. Londo, N. A. Rahman, B. G. Barisas, “Normally-on photomultiplier gating circuit with reduced post-gate artifacts for use in transient luminescence measurements,” Rev. Sci. Instrum. 63, 5454–5458 (1992).
[CrossRef]

B. G. Barisas, M. D. Leuther, “Grid-gated photomultiplier photometer with subnanosecond time response,” Rev. Sci. Instrum. 51, 74–78 (1980).
[CrossRef]

L. Campbell, “Afterpulse measurement and correction,” Rev. Sci. Instrum. 63, 5794–5798 (1992).
[CrossRef]

Other (11)

I. S. McDermid, T. D. Walsh, “New lidar for the network for the detection of stratospheric change—Mauna Loa Observatory: initial results,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, DC., 1993), p. 276.

M. P. Bristow, D. E. Diebel, D. H. Bundy, C. M. Edmonds, R. M. Turner, J. L. McElroy, “Development of an airborne excimer-based UV-DIAL for monitoring ozone and sulfur dioxide in the lower troposphere,” in Proceedings of the Conference on Remote Sensing Atmospheric Chemistry, J. L. McElroy, R. J. McNeal, eds. (Society of Photo-Optical Instrumentation Engineers, Bellvue, Washington, 1991), Vol. 1491, p. 68.

H. Moosmüsller, R. J. Alvarez, R. M. Jorgensen, C. M. Edmonds, D. H. Bundy, D. E. Diebel, M. P. Bristow, J. L. McElroy, “An airborne lidar system for tropospheric ozone measurement,” in Proceedings of the 86th Annual Meeting of the Air and Waste Management Association (Air and Waste Management Association, Pittsburgh, Pa., 1993).

R. W. Engstrom, RCA Photomultiplier Handbook, publ. PMT-62 (available from Burle Industries Inc., Lancaster, Pa., 1980, as publ. TP-136).

J. P. Boutot, J. Nussli, D. Vallat, “Recent trends in photomultipliers for nuclear physics,” in Advances in Electronics and Electron Physics, P. W. Hawkes, ed. (Academic, New York, 1983), Vol. 60, pp. 223–305.
[CrossRef]

Photomultiplier Catalogue, publ. P001/E79 (Thorn EMI Electron Tubes Ltd., Ruislip, Middlesex, UK, 1979).

J. D. W. Barrick, “Gating characteristics of photomultiplier tubes for lidar applications,” NASA Tech. Mem. 87699 (Langley Research Center, Hampton, Va., 1986).

R. Wardle, “Gating photomultipliers,” Publ. R/P061 (Thorn EMI Electron Tubes Ltd., Ruislip, Middlesex, UK, 1982).

J. M. Schonkeren, Photomultipliers (N. V. Philips’ Gloeilampenfabrieken, Eindhoven, The Netherlands, 1970).

Photomultiplier Tube Catalogue, publ. D-PMT-CAT93 (Philips Photonics, Slatersville, R.I., 1993).

Photomultiplier Catalogue, publ. PMC/93 (Thorn EMI Electron Tubes Ltd., Ruislip, Middlesex, UK, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Schematic showing relationship between electronic, electro-optic, and optical components: HV, high voltage; ND, neutral density; CW, continuous wave; LED, light emitting diode; μν, microvolt; DC, direct current.

Fig. 2
Fig. 2

Divider network with three-dynode gate for the control of 12-stage PMT’s such as EMI types 9214 and 9814. Resistors R 1, R 2, and R 3 are key variables for optimizing pulsed signal linearity (see Subsection 3.C). Dy, dynode; ppm, parts in 106.

Fig. 3
Fig. 3

Oscillogram showing 45-μs gate pulse, and gated signal from the EMI 9214/502 PMT under continuous blue LED illumination: a, positive gate pulse at 100:1 attenuation (vertical scale, 0.2 V/division); b, peak region of trace a at 40× magnification; c, PMT signal of −2.40 mA amplitude at 0.4 mA/division; d, peak region of trace c at 40× magnification. R 1, R 2, and R 3 are 86, 75, and 64 kΩ, respectively. The overall PMT voltage is −1300 V, the gate pulse voltage is +92.10 V, and the horizontal scale is 5 μs/division. All traces are simple averages of 3 × 104 waveforms. The repetition rate is 20 Hz and the low-pass filter for PMT traces is 3.5 MHz. The 12-μs long ramp following the gate leading edge, which is visible in these and all subsequent magnified oscillograms, is an artefact introduced by the DSO (see text).

Fig. 4
Fig. 4

Influence of pulse voltage for three-dynode gate of Fig. 2 on signal amplitude for experimental conditions of Fig. 3. Signal amplitude (measured at the midpoint of 45-μs wide gated signal) is shown as a percentage of the (2.40-mA) signal obtained under constant gain (zero-slope) conditions. This signal level is very close to the peak of the curve (see Subsection 3.A).

Fig. 5
Fig. 5

Effect of gate pulse voltage on gated signal slope for conditions of steady illumination. Oscillogram shows magnified peak region of gate pulse and signal traces for conditions similar to Fig. 3, except as indicated: a, positive gate pulse of +92.10 V at 100:1 attenuation (vertical scale, 0.2 V/division, plus 40× magnification); b, c, d, PMT signal traces of midpulse amplitude −2.30, − 2.40, and −2.39 mA, respectively, corresponding to gate pulses of +90.10, +92.10, and +94.10 V, respectively (vertical scale, 0.4 mA/division, plus 40× magnification). Note that zero levels for expanded traces have been adjusted for illustrative purposes. Amplitude of trace c at midpoint is actually greater than that of trace d because the +92.10 V gate voltage is closer to the peak of the gain curve (see Fig. 4).

Fig. 6
Fig. 6

Effect of source intensity on gated signals demonstrating the absence of SIGC for the PMT with CsSb dynodes. Oscillogram shows magnified peak region of three gated signal traces for the 9214/502 PMT, using a three-dynode gate circuit at −1300 V with a gate pulse of +92.10 V, where conditions are as for Fig. 3 except as indicated: a, signal amplitude of −1.20 mA at 0.2 mA/division, plus 50× magnification (average of 4.5 × 104 waveforms); b, signal amplitude of −2.40 mA at 0.4 mA/division, plus 40× magnification (average of 3 × 104 waveforms); c, signal amplitude of −6.80 mA at 1 mA/division, plus 50× magnification (average of 2 × 104 waveforms).

Fig. 7
Fig. 7

Effect of isolating the magnetic shield from ground on the PMT signal for three different illumination levels. Oscillogram shows three gated signal traces for the same conditions and PMT as in Fig. 6 except the magnetic shield is connected to cathode potential by a 10-MΩ resistor, and the gate pulse voltage is reset to + 89.20 V so that trace a has zero slope.

Fig. 8
Fig. 8

Linearity plots for PMT 9214/502 with four versions of the three-dynode gate network of Fig. 2, operating at −1300 V. Each signal current measurement, made at the 9-μs point in a 10-μs gate, is the average of 1000 waveforms. The signal bandwidth is 0.23 MHz and the gate pulse repetition rate is 20 Hz.

Fig. 9
Fig. 9

Linearity plots for PMT 9214/502 for the three-dynode gate network of Fig. 2, with R 1, R 2, and R 3 set to 86, 75, and 64 kΩ, respectively, for four PMT operating voltages. Others conditions are the same as for Fig. 8.

Fig. 10
Fig. 10

Linearity limit and current amplification as a function of operating voltage for the 9214/502 PMT, using the three-dynode gate network of Fig. 2 with R 1, R 2, and R 3 set to 86, 75, and 64 kΩ, respectively.

Fig. 11
Fig. 11

Oscillogram showing the influence of SIGC on the peak region of gated signals for the 9814 PMT obtained with the three-dynode gate network of Fig. 2: a, gated signal of −0.40 mA (vertical scale, 0.1 mA/division, plus 50× magnification; average of 6 × 104 waveforms); b, gated signal of −1.20 mA (vertical scale, 0.2 mA/division, plus 50× magnification; average of 4 × 104 waveforms); c, gated signal of −2.40 mA (vertical scale, 0.4 mA/division, plus 40× magnification; average of 2 × 104 waveforms); d, gated signal of −6.5 mA (vertical scale, 1 mA/division, plus 50× magnification; average of 1.5 × 104 waveforms). R 1, R 2, and R 3 are set to 120, 150, and 200 kΩ, respectively. The overall PMT voltage is −1400 V, the gate pulse voltage is +83.40 V, the repetition rate is 20 Hz, and the low-pass filter is 3.5 MHz. Illumination is by a cw blue LED, and the horizontal scale is 5 μs/division.

Fig. 12
Fig. 12

SIGC data for the 9814 PMT as function of signal current, presented in the form of either a signal-normalized slope or as a percentage gain increase measured at the 40-μs point in a 45-μs gate. The PMT operating conditions are the same as for Fig. 11. Note that the 9214/502 PMT (with CsSb dynodes) shows no gain change up to its linearity limit of ~8 mA when it is operated according to the conditions of Fig. 10 at −1400 V.

Fig. 13
Fig. 13

Linearity plots for the 9814 PMT measured for 10- and 40-μs-wide gate pulses with and without correction for SIGC. The PMT operating conditions are the same as for Fig. 11.

Fig. 14
Fig. 14

Divider network with focus-grid gate for the control of 12-stage PMT’s such as EMI types 9214 and 9814. Resistors R 1, R 2, and R 3 are key variables for optimizing pulsed signal linearity. Dy, dynode; ppm, parts in 106.

Fig. 15
Fig. 15

Gate on-to-off signal ratio for the 9214/502 PMT with focus-grid gating as function of focus-grid bias voltage (relative to cathode potential) for two values of the first stage gain. The circuit is as shown in Fig. 14, with R 1, R 2, and R 3 set to 120, 150, and 200 kΩ, respectively. Overall PMT operating voltage is − 1300 V.

Fig. 16
Fig. 16

Divider network with focus grid–dynode 5 gate for the control of 12-stage PMT’s such as EMI types 9214 and 9814. Resistors R 1, R 2, and R 3 are key variables for optimizing pulsed signal linearity. Dy, dynode; ppm, parts in 106.

Fig. 17
Fig. 17

Gate on-to-off signal ratio as a function of operating voltage for the 9214/502 PMT obtained with four different gating circuits. In the absence of gate pulse, the dc leakage current caused by cw LED exposure was measured with a picoammeter.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

C = 100 q n v ,

Metrics