Abstract

Comparative operating characteristics of external-cavity diode lasers (ECDL’s) with either a channel substrate planar device or a multi-quantum-well (MQW) device are presented. These include the output beam profile, which is significantly altered depending on the collimating lens used (either multielement or graded index), power versus injection-current characteristics, and the optical frequency and the rf spectra. The coherence lengths of the different laser diode–collimating-lens combinations in the ECDL are measured, and a new method for calculating the coupling coefficient and the coupled values of the internal quantum efficiency and the internal lumped loss is demonstrated for the MQW device.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Petermann, Laser Diode Modulation and Noise (Kluwer, Dordrecht, The Netherlands, 1988), Chap. 9, pp. 250–285.
    [CrossRef]
  2. J. Mork, B. Tromberg, J. Mark, “Chaos in semiconductor lasers with optical feedback: theory and experiment,” IEEE J. Quantum Electron. 28, 93–108 (1992).
    [CrossRef]
  3. J. Sacher, W. Elsässer, E. O. Göbel, “Nonlinear dynamics of semiconductor laser emission under variable feedback conditions,” IEEE J. Quantum Electron. 27, 373–379 (1991).
    [CrossRef]
  4. C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
    [CrossRef]
  5. P. W. A. McIlroy, “Calculation of the mode suppression ratio in Fabry–Perot, DBR and external cavity lasers,” IEEE J. Quantum Electron. 26, 991–997 (1990).
    [CrossRef]
  6. A. P. Willis, D. M. Kane, “Modulation induced coherence collapse in FM diode lasers,” Opt. Commun. 107, 65–70 (1994).
    [CrossRef]
  7. K. Tatah, E. Garmire, “Low-frequency intensity noise resonance in an external cavity GaAs laser for possible laser characterization,” IEEE J. Quantum Electron. 25, 1800–1807 (1989).
    [CrossRef]
  8. J. H. Osmundsen, N. Gade, “Influence of optical feedback on laser frequency spectrum and threshold conditions,” IEEE J. Quantum Electron. 19, 465–469 (1983).
    [CrossRef]
  9. J. Sigg, “Effects of optical feedback on the light-current characteristics of semiconductor lasers,” IEEE J. Quantum Electron. 29, 1262–1270 (1993).
    [CrossRef]
  10. A. P. Willis, A. I. Ferguson, D. M. Kane, “External cavity diode lasers with frequency shifted feedback,” Opt. Commun. (to be published).
  11. T. W. Cline, R. B. Jander, “Wavefront aberration measurements on GRIN-rod lenses,” Appl. Opt. 21, 1035–1041 (1982).
    [CrossRef] [PubMed]
  12. B. Mroziewicz, M. Bugajski, W. Nakwaski, Physics of Semiconductor Lasers (North-Holland, Amsterdam, 1991), Chap. 4.
  13. M. Ettenberg, C. J. Nuese, H. Kressel, “The temperature dependence of threshold current for double-heterojunction lasers,” J. Appl. Phys. 50, 2949–2950 (1979).
    [CrossRef]
  14. N. A. Olson, N. K. Dutta, W. T. Tsang, R. A. Logan, “Threshold current characteristics of GaAs lasers under short pulse excitation,” Electron. Lett. 20, 63–64 (1984).
    [CrossRef]
  15. W. A. Hamel, M. Babeliowsky, J. P. Woerdman, G. A. Acket, “Diagnostics of asymmetrically coated semiconductor laser,” IEEE Photon. Tech. Lett. 3, 600 (1991).
    [CrossRef]

1994

A. P. Willis, D. M. Kane, “Modulation induced coherence collapse in FM diode lasers,” Opt. Commun. 107, 65–70 (1994).
[CrossRef]

1993

J. Sigg, “Effects of optical feedback on the light-current characteristics of semiconductor lasers,” IEEE J. Quantum Electron. 29, 1262–1270 (1993).
[CrossRef]

1992

J. Mork, B. Tromberg, J. Mark, “Chaos in semiconductor lasers with optical feedback: theory and experiment,” IEEE J. Quantum Electron. 28, 93–108 (1992).
[CrossRef]

1991

J. Sacher, W. Elsässer, E. O. Göbel, “Nonlinear dynamics of semiconductor laser emission under variable feedback conditions,” IEEE J. Quantum Electron. 27, 373–379 (1991).
[CrossRef]

C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[CrossRef]

W. A. Hamel, M. Babeliowsky, J. P. Woerdman, G. A. Acket, “Diagnostics of asymmetrically coated semiconductor laser,” IEEE Photon. Tech. Lett. 3, 600 (1991).
[CrossRef]

1990

P. W. A. McIlroy, “Calculation of the mode suppression ratio in Fabry–Perot, DBR and external cavity lasers,” IEEE J. Quantum Electron. 26, 991–997 (1990).
[CrossRef]

1989

K. Tatah, E. Garmire, “Low-frequency intensity noise resonance in an external cavity GaAs laser for possible laser characterization,” IEEE J. Quantum Electron. 25, 1800–1807 (1989).
[CrossRef]

1984

N. A. Olson, N. K. Dutta, W. T. Tsang, R. A. Logan, “Threshold current characteristics of GaAs lasers under short pulse excitation,” Electron. Lett. 20, 63–64 (1984).
[CrossRef]

1983

J. H. Osmundsen, N. Gade, “Influence of optical feedback on laser frequency spectrum and threshold conditions,” IEEE J. Quantum Electron. 19, 465–469 (1983).
[CrossRef]

1982

1979

M. Ettenberg, C. J. Nuese, H. Kressel, “The temperature dependence of threshold current for double-heterojunction lasers,” J. Appl. Phys. 50, 2949–2950 (1979).
[CrossRef]

Acket, G. A.

W. A. Hamel, M. Babeliowsky, J. P. Woerdman, G. A. Acket, “Diagnostics of asymmetrically coated semiconductor laser,” IEEE Photon. Tech. Lett. 3, 600 (1991).
[CrossRef]

Babeliowsky, M.

W. A. Hamel, M. Babeliowsky, J. P. Woerdman, G. A. Acket, “Diagnostics of asymmetrically coated semiconductor laser,” IEEE Photon. Tech. Lett. 3, 600 (1991).
[CrossRef]

Bugajski, M.

B. Mroziewicz, M. Bugajski, W. Nakwaski, Physics of Semiconductor Lasers (North-Holland, Amsterdam, 1991), Chap. 4.

Cline, T. W.

Dutta, N. K.

N. A. Olson, N. K. Dutta, W. T. Tsang, R. A. Logan, “Threshold current characteristics of GaAs lasers under short pulse excitation,” Electron. Lett. 20, 63–64 (1984).
[CrossRef]

Elsässer, W.

J. Sacher, W. Elsässer, E. O. Göbel, “Nonlinear dynamics of semiconductor laser emission under variable feedback conditions,” IEEE J. Quantum Electron. 27, 373–379 (1991).
[CrossRef]

Ettenberg, M.

M. Ettenberg, C. J. Nuese, H. Kressel, “The temperature dependence of threshold current for double-heterojunction lasers,” J. Appl. Phys. 50, 2949–2950 (1979).
[CrossRef]

Ferguson, A. I.

A. P. Willis, A. I. Ferguson, D. M. Kane, “External cavity diode lasers with frequency shifted feedback,” Opt. Commun. (to be published).

Gade, N.

J. H. Osmundsen, N. Gade, “Influence of optical feedback on laser frequency spectrum and threshold conditions,” IEEE J. Quantum Electron. 19, 465–469 (1983).
[CrossRef]

Garmire, E.

K. Tatah, E. Garmire, “Low-frequency intensity noise resonance in an external cavity GaAs laser for possible laser characterization,” IEEE J. Quantum Electron. 25, 1800–1807 (1989).
[CrossRef]

Göbel, E. O.

J. Sacher, W. Elsässer, E. O. Göbel, “Nonlinear dynamics of semiconductor laser emission under variable feedback conditions,” IEEE J. Quantum Electron. 27, 373–379 (1991).
[CrossRef]

Hamel, W. A.

W. A. Hamel, M. Babeliowsky, J. P. Woerdman, G. A. Acket, “Diagnostics of asymmetrically coated semiconductor laser,” IEEE Photon. Tech. Lett. 3, 600 (1991).
[CrossRef]

Hollberg, L.

C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[CrossRef]

Jander, R. B.

Kane, D. M.

A. P. Willis, D. M. Kane, “Modulation induced coherence collapse in FM diode lasers,” Opt. Commun. 107, 65–70 (1994).
[CrossRef]

A. P. Willis, A. I. Ferguson, D. M. Kane, “External cavity diode lasers with frequency shifted feedback,” Opt. Commun. (to be published).

Kressel, H.

M. Ettenberg, C. J. Nuese, H. Kressel, “The temperature dependence of threshold current for double-heterojunction lasers,” J. Appl. Phys. 50, 2949–2950 (1979).
[CrossRef]

Logan, R. A.

N. A. Olson, N. K. Dutta, W. T. Tsang, R. A. Logan, “Threshold current characteristics of GaAs lasers under short pulse excitation,” Electron. Lett. 20, 63–64 (1984).
[CrossRef]

Mark, J.

J. Mork, B. Tromberg, J. Mark, “Chaos in semiconductor lasers with optical feedback: theory and experiment,” IEEE J. Quantum Electron. 28, 93–108 (1992).
[CrossRef]

McIlroy, P. W. A.

P. W. A. McIlroy, “Calculation of the mode suppression ratio in Fabry–Perot, DBR and external cavity lasers,” IEEE J. Quantum Electron. 26, 991–997 (1990).
[CrossRef]

Mork, J.

J. Mork, B. Tromberg, J. Mark, “Chaos in semiconductor lasers with optical feedback: theory and experiment,” IEEE J. Quantum Electron. 28, 93–108 (1992).
[CrossRef]

Mroziewicz, B.

B. Mroziewicz, M. Bugajski, W. Nakwaski, Physics of Semiconductor Lasers (North-Holland, Amsterdam, 1991), Chap. 4.

Nakwaski, W.

B. Mroziewicz, M. Bugajski, W. Nakwaski, Physics of Semiconductor Lasers (North-Holland, Amsterdam, 1991), Chap. 4.

Nuese, C. J.

M. Ettenberg, C. J. Nuese, H. Kressel, “The temperature dependence of threshold current for double-heterojunction lasers,” J. Appl. Phys. 50, 2949–2950 (1979).
[CrossRef]

Olson, N. A.

N. A. Olson, N. K. Dutta, W. T. Tsang, R. A. Logan, “Threshold current characteristics of GaAs lasers under short pulse excitation,” Electron. Lett. 20, 63–64 (1984).
[CrossRef]

Osmundsen, J. H.

J. H. Osmundsen, N. Gade, “Influence of optical feedback on laser frequency spectrum and threshold conditions,” IEEE J. Quantum Electron. 19, 465–469 (1983).
[CrossRef]

Petermann, K.

K. Petermann, Laser Diode Modulation and Noise (Kluwer, Dordrecht, The Netherlands, 1988), Chap. 9, pp. 250–285.
[CrossRef]

Sacher, J.

J. Sacher, W. Elsässer, E. O. Göbel, “Nonlinear dynamics of semiconductor laser emission under variable feedback conditions,” IEEE J. Quantum Electron. 27, 373–379 (1991).
[CrossRef]

Sigg, J.

J. Sigg, “Effects of optical feedback on the light-current characteristics of semiconductor lasers,” IEEE J. Quantum Electron. 29, 1262–1270 (1993).
[CrossRef]

Tatah, K.

K. Tatah, E. Garmire, “Low-frequency intensity noise resonance in an external cavity GaAs laser for possible laser characterization,” IEEE J. Quantum Electron. 25, 1800–1807 (1989).
[CrossRef]

Tromberg, B.

J. Mork, B. Tromberg, J. Mark, “Chaos in semiconductor lasers with optical feedback: theory and experiment,” IEEE J. Quantum Electron. 28, 93–108 (1992).
[CrossRef]

Tsang, W. T.

N. A. Olson, N. K. Dutta, W. T. Tsang, R. A. Logan, “Threshold current characteristics of GaAs lasers under short pulse excitation,” Electron. Lett. 20, 63–64 (1984).
[CrossRef]

Wieman, C. E.

C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[CrossRef]

Willis, A. P.

A. P. Willis, D. M. Kane, “Modulation induced coherence collapse in FM diode lasers,” Opt. Commun. 107, 65–70 (1994).
[CrossRef]

A. P. Willis, A. I. Ferguson, D. M. Kane, “External cavity diode lasers with frequency shifted feedback,” Opt. Commun. (to be published).

Woerdman, J. P.

W. A. Hamel, M. Babeliowsky, J. P. Woerdman, G. A. Acket, “Diagnostics of asymmetrically coated semiconductor laser,” IEEE Photon. Tech. Lett. 3, 600 (1991).
[CrossRef]

Appl. Opt.

Electron. Lett.

N. A. Olson, N. K. Dutta, W. T. Tsang, R. A. Logan, “Threshold current characteristics of GaAs lasers under short pulse excitation,” Electron. Lett. 20, 63–64 (1984).
[CrossRef]

IEEE J. Quantum Electron.

J. Mork, B. Tromberg, J. Mark, “Chaos in semiconductor lasers with optical feedback: theory and experiment,” IEEE J. Quantum Electron. 28, 93–108 (1992).
[CrossRef]

J. Sacher, W. Elsässer, E. O. Göbel, “Nonlinear dynamics of semiconductor laser emission under variable feedback conditions,” IEEE J. Quantum Electron. 27, 373–379 (1991).
[CrossRef]

P. W. A. McIlroy, “Calculation of the mode suppression ratio in Fabry–Perot, DBR and external cavity lasers,” IEEE J. Quantum Electron. 26, 991–997 (1990).
[CrossRef]

K. Tatah, E. Garmire, “Low-frequency intensity noise resonance in an external cavity GaAs laser for possible laser characterization,” IEEE J. Quantum Electron. 25, 1800–1807 (1989).
[CrossRef]

J. H. Osmundsen, N. Gade, “Influence of optical feedback on laser frequency spectrum and threshold conditions,” IEEE J. Quantum Electron. 19, 465–469 (1983).
[CrossRef]

J. Sigg, “Effects of optical feedback on the light-current characteristics of semiconductor lasers,” IEEE J. Quantum Electron. 29, 1262–1270 (1993).
[CrossRef]

IEEE Photon. Tech. Lett.

W. A. Hamel, M. Babeliowsky, J. P. Woerdman, G. A. Acket, “Diagnostics of asymmetrically coated semiconductor laser,” IEEE Photon. Tech. Lett. 3, 600 (1991).
[CrossRef]

J. Appl. Phys.

M. Ettenberg, C. J. Nuese, H. Kressel, “The temperature dependence of threshold current for double-heterojunction lasers,” J. Appl. Phys. 50, 2949–2950 (1979).
[CrossRef]

Opt. Commun.

A. P. Willis, D. M. Kane, “Modulation induced coherence collapse in FM diode lasers,” Opt. Commun. 107, 65–70 (1994).
[CrossRef]

Rev. Sci. Instrum.

C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[CrossRef]

Other

A. P. Willis, A. I. Ferguson, D. M. Kane, “External cavity diode lasers with frequency shifted feedback,” Opt. Commun. (to be published).

B. Mroziewicz, M. Bugajski, W. Nakwaski, Physics of Semiconductor Lasers (North-Holland, Amsterdam, 1991), Chap. 4.

K. Petermann, Laser Diode Modulation and Noise (Kluwer, Dordrecht, The Netherlands, 1988), Chap. 9, pp. 250–285.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

ECDL and its equivalent device.

Fig. 2
Fig. 2

Experimental layout of the diagnostics used to characterize the ECDL.

Fig. 3
Fig. 3

Output beam profile of the ECDL system is shown for the following system combinations, along with a description of the corresponding optical frequency spectrum (see text for a description of system notation): (a), (b) S.2 (97.5%), single optical frequency operation; (c) S.2 (97.5%), coherence-collapse operation, (d) S.2, no external mirror, nearly single-frequency operation; (e) S.3 (97.5%), single optical frequency operation; (f) S.1 (97.5%), single optical frequency operation, (g) S.1 (97.5%), coherence-collapse operation, (h) S.1, no external mirror, nearly single-frequency operation.

Fig. 4
Fig. 4

Calculated values for the slope efficiencies η1, η2, and η = η1 + η2 for the Hitachi HLP1400, with a 3.5% AR coating operated in an ECDL, as a function of the effective reflectivity R 2′. In each set of curves the center curve is for α = 77 cm−1, the upper curve is for α = 72 cm−1, and the lower curve is for α = 82 m−1. The experimental value of η1 is for HI.1 (97.5%).

Fig. 5
Fig. 5

Calculated values for the slope efficiencies η1, η2 and η = η1 + η2 for the Hitachi HLP1400 with a 0.1% AR coating operated in an ECDL as a function of the effective reflectivity R 2′. The experimental value of η2 is for HII.1 (97.5%).

Fig. 6
Fig. 6

Measured power versus injection-current characteristic for the device STC LT50-03U and the ECDL S.1 (97.5%).

Fig. 7
Fig. 7

(a) Calculated values of the slope efficiency η2 as a function of R 2′ for different values of the internal quantum efficiency. For a given η i , α is calculated by fitting it to the measured value of 0.7 mW/mA for the solitary device: η i = 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 correspond to α = 2.0, 15.0, 28.0, 41.0, 54.0, and 67.0 cm−1, respectively. The experimentally measured points are plotted based on the assumption of a coupling coefficient of 1.0. (b) Best curve fit, with fitting parameters, η i and k, to the experimental data, yielding η i = 0.72 and k = 1.0.

Fig. 8
Fig. 8

Ratio of the threshold current of the ECDL, S.1, to that of the solitary STC device, plotted as a function of the reflectance of the external mirror. The best-fit curve, τ p = 1.88 ps and k′ = 0.41, and the curve τ p = 1.32 ps (set), k′ = 0.79 (fit) are shown.

Fig. 9
Fig. 9

Difference of the threshold current of the solitary STC device and that of the ECDL S.1, plotted as a function of the reflectance of the external mirror. The best-fit curve, I c = 4.82 mA and k = 0.17, and the curve k = 0.80 (set) and I c = 3.74 mA (fit) are shown.

Fig. 10
Fig. 10

Power versus injection-current characteristic for the STC device in an ECDL with R ext = 97.5%, with three different collimating lenses.

Fig. 11
Fig. 11

(a)–(d) Optical frequency spectrum and (e)–(h) corresponding RF beat spectrum about the longitudinal-mode spacing for the system HII.1 (83%), I = 79.8 mA. The four pairs of spectra are for essentially the same alignment.

Tables (3)

Tables Icon

Table 1 Laser Diode Specifications

Tables Icon

Table 2 Collimating-Lens Specifications

Tables Icon

Table 3 Reduced Threshold and Slope Efficiency in the ECDL

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

gain = 1 = exp [ ( Γ α g - α ) L ] R 1 exp [ ( Γ α g - α ) L ] R 2 ,
α g = 1 Γ ( α - 1 2 L ln R 1 R 2 ) .
α g = λ 8 π τ sp Δ ν n t ,
J th ( 0 ) = 8 π Δ ν q d λ 2 η i Γ [ α - 1 2 L ln ( R 1 R 2 ) ] ,
J th ( T ) = J th ( 0 ) exp ( T / T 0 ) ,
P ex = 1 2 L ln ( 1 / R 1 R 2 ) α + 1 2 L ln ( 1 / R 1 R 2 ) P in ,
P in = I - I th q η i h ν ,
η ex = d ( P ex / h ν ) d ( I - I th ) / e = ln ( 1 / R 1 R 2 ) 2 α L + ln ( 1 / R 1 R 2 ) η i .
η = η ex ( h ν e ) ,
η 1 = η ( 1 - R 1 ) R 2 ( R 1 + R 2 ) ( 1 - R 1 R 2 ) ( W / A ) ,
η 2 = η ( 1 - R 2 ) R 1 ( R 1 + R 2 ) ( 1 - R 1 R 2 ) ( W / A ) .
η 1 ln ( 1 R 1 ) 2 α L + ln ( 1 R 1 R 2 ) η i ( h ν e ) ( W / A ) ,
η 2 ln ( 1 R 2 ) 2 α L + ln ( 1 R 1 R 2 ) η i ( h ν e ) ( W / A ) ,
R eff = | r 2 + r 3 exp ( i 2 ω l / c ) 1 + r 2 r 3 exp ( i 2 ω l / c ) | 2 , r 3 = k R ext ,             r 2 = R 2 ,
R 2 = ( R eff ) max = | r 2 + r 3 1 + r 2 r 3 | 2 .
( R eff ) min = | r 2 - r 3 1 - r 2 r 3 | 2 ,
I th ec I th d = 1 + 2 f d τ p ln ( r 2 1 + r 2 r 3 r 2 + r 3 ) ,
τ p = n c [ α + 1 2 L ln ( 1 R 1 R 2 ) ] = n c ( α + α m ) .
I th d - I th ec = I c ln ( R 2 / R 2 ) .
( I th d - I th ec ) / I th d = ln ( R 2 R 2 ) L ( Γ α g n 0 + α ) - ½ ln ( R 1 R 2 ) ,

Metrics