Abstract

A single-cavity solid-state laser that is resonant with sodium D 2 absorption is reported. Simultaneous 1.06- and 1.32-μm emission from a Q-switched Nd:YAG laser is summed with an intracavity type II KTP crystal. A single-intracavity étalon is sufficient to provide a time-averaged linewidth of 1.7 GHz at 589 nm.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Morgan, F. A. Hopf, N. Peyghambarian, “Dual-frequency Nd:YAG laser for the study and application of nonlinear optical crystals,” Opt. Eng. 26, 1240–1244 (1987).
  2. H. Y. Shen, Y. P. Zhou, W. X. Lin, Z. D. Zeng, R. R. Zeng, G. F. Yu, C. H. Huang, A. D. Jiang, S. Q. Jia, D. Z. Shen, “Second harmonic generation and sum frequency mixing of dual wavelength Nd:YALO3 laser in flux grown KTiOPO4 crystal,” IEEE J. Quantum Electron. 28, 48–51 (1992).
    [Crossref]
  3. Y. Saito, T. Teramura, A. Nomura, T. Kano, “Simultaneously tunable three-wavelength dye laser,” Appl. Opt. 24, 2477–2478 (1985).
    [Crossref] [PubMed]
  4. C. G. Bethea, “Megawatt power at 1.318 μ in Nd3+:YAG and simultaneous oscillation at both 1.06 and 1.318 μ,” IEEE J. Quantum Electron. QE-9, 254 (1973).
    [Crossref]
  5. T. H. Jeys, “Development of a mesospheric sodium laser beacon for atmospheric adaptive optics,” Lincoln Lab. J. 4, 133–149 (1991).
  6. P. Schultz, MIT Lincoln Laboratories, Lexington, Mass. 02173 (personal communication, 1993).
  7. J. Marling, “1.05–1.44 μm tunability and performance of the cw Nd3+:YAG laser,” IEEE J. Quantum Electron. QE-14, 56–62 (1978).
    [Crossref]
  8. H. Vanherzeele, J. D. Bierlein, “Magnitude of the nonlinear-optical coefficients of KTiOPO4,” Opt. Lett. 17, 982–984 (1992).
    [Crossref] [PubMed]
  9. K. C. Liu, M. G. Cohen, “High-power Nd:YAG laser at 532 nm using intracavity type 11 KTP,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1986), p. 110.

1992 (2)

H. Y. Shen, Y. P. Zhou, W. X. Lin, Z. D. Zeng, R. R. Zeng, G. F. Yu, C. H. Huang, A. D. Jiang, S. Q. Jia, D. Z. Shen, “Second harmonic generation and sum frequency mixing of dual wavelength Nd:YALO3 laser in flux grown KTiOPO4 crystal,” IEEE J. Quantum Electron. 28, 48–51 (1992).
[Crossref]

H. Vanherzeele, J. D. Bierlein, “Magnitude of the nonlinear-optical coefficients of KTiOPO4,” Opt. Lett. 17, 982–984 (1992).
[Crossref] [PubMed]

1991 (1)

T. H. Jeys, “Development of a mesospheric sodium laser beacon for atmospheric adaptive optics,” Lincoln Lab. J. 4, 133–149 (1991).

1987 (1)

R. A. Morgan, F. A. Hopf, N. Peyghambarian, “Dual-frequency Nd:YAG laser for the study and application of nonlinear optical crystals,” Opt. Eng. 26, 1240–1244 (1987).

1985 (1)

1978 (1)

J. Marling, “1.05–1.44 μm tunability and performance of the cw Nd3+:YAG laser,” IEEE J. Quantum Electron. QE-14, 56–62 (1978).
[Crossref]

1973 (1)

C. G. Bethea, “Megawatt power at 1.318 μ in Nd3+:YAG and simultaneous oscillation at both 1.06 and 1.318 μ,” IEEE J. Quantum Electron. QE-9, 254 (1973).
[Crossref]

Bethea, C. G.

C. G. Bethea, “Megawatt power at 1.318 μ in Nd3+:YAG and simultaneous oscillation at both 1.06 and 1.318 μ,” IEEE J. Quantum Electron. QE-9, 254 (1973).
[Crossref]

Bierlein, J. D.

Cohen, M. G.

K. C. Liu, M. G. Cohen, “High-power Nd:YAG laser at 532 nm using intracavity type 11 KTP,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1986), p. 110.

Hopf, F. A.

R. A. Morgan, F. A. Hopf, N. Peyghambarian, “Dual-frequency Nd:YAG laser for the study and application of nonlinear optical crystals,” Opt. Eng. 26, 1240–1244 (1987).

Huang, C. H.

H. Y. Shen, Y. P. Zhou, W. X. Lin, Z. D. Zeng, R. R. Zeng, G. F. Yu, C. H. Huang, A. D. Jiang, S. Q. Jia, D. Z. Shen, “Second harmonic generation and sum frequency mixing of dual wavelength Nd:YALO3 laser in flux grown KTiOPO4 crystal,” IEEE J. Quantum Electron. 28, 48–51 (1992).
[Crossref]

Jeys, T. H.

T. H. Jeys, “Development of a mesospheric sodium laser beacon for atmospheric adaptive optics,” Lincoln Lab. J. 4, 133–149 (1991).

Jia, S. Q.

H. Y. Shen, Y. P. Zhou, W. X. Lin, Z. D. Zeng, R. R. Zeng, G. F. Yu, C. H. Huang, A. D. Jiang, S. Q. Jia, D. Z. Shen, “Second harmonic generation and sum frequency mixing of dual wavelength Nd:YALO3 laser in flux grown KTiOPO4 crystal,” IEEE J. Quantum Electron. 28, 48–51 (1992).
[Crossref]

Jiang, A. D.

H. Y. Shen, Y. P. Zhou, W. X. Lin, Z. D. Zeng, R. R. Zeng, G. F. Yu, C. H. Huang, A. D. Jiang, S. Q. Jia, D. Z. Shen, “Second harmonic generation and sum frequency mixing of dual wavelength Nd:YALO3 laser in flux grown KTiOPO4 crystal,” IEEE J. Quantum Electron. 28, 48–51 (1992).
[Crossref]

Kano, T.

Lin, W. X.

H. Y. Shen, Y. P. Zhou, W. X. Lin, Z. D. Zeng, R. R. Zeng, G. F. Yu, C. H. Huang, A. D. Jiang, S. Q. Jia, D. Z. Shen, “Second harmonic generation and sum frequency mixing of dual wavelength Nd:YALO3 laser in flux grown KTiOPO4 crystal,” IEEE J. Quantum Electron. 28, 48–51 (1992).
[Crossref]

Liu, K. C.

K. C. Liu, M. G. Cohen, “High-power Nd:YAG laser at 532 nm using intracavity type 11 KTP,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1986), p. 110.

Marling, J.

J. Marling, “1.05–1.44 μm tunability and performance of the cw Nd3+:YAG laser,” IEEE J. Quantum Electron. QE-14, 56–62 (1978).
[Crossref]

Morgan, R. A.

R. A. Morgan, F. A. Hopf, N. Peyghambarian, “Dual-frequency Nd:YAG laser for the study and application of nonlinear optical crystals,” Opt. Eng. 26, 1240–1244 (1987).

Nomura, A.

Peyghambarian, N.

R. A. Morgan, F. A. Hopf, N. Peyghambarian, “Dual-frequency Nd:YAG laser for the study and application of nonlinear optical crystals,” Opt. Eng. 26, 1240–1244 (1987).

Saito, Y.

Schultz, P.

P. Schultz, MIT Lincoln Laboratories, Lexington, Mass. 02173 (personal communication, 1993).

Shen, D. Z.

H. Y. Shen, Y. P. Zhou, W. X. Lin, Z. D. Zeng, R. R. Zeng, G. F. Yu, C. H. Huang, A. D. Jiang, S. Q. Jia, D. Z. Shen, “Second harmonic generation and sum frequency mixing of dual wavelength Nd:YALO3 laser in flux grown KTiOPO4 crystal,” IEEE J. Quantum Electron. 28, 48–51 (1992).
[Crossref]

Shen, H. Y.

H. Y. Shen, Y. P. Zhou, W. X. Lin, Z. D. Zeng, R. R. Zeng, G. F. Yu, C. H. Huang, A. D. Jiang, S. Q. Jia, D. Z. Shen, “Second harmonic generation and sum frequency mixing of dual wavelength Nd:YALO3 laser in flux grown KTiOPO4 crystal,” IEEE J. Quantum Electron. 28, 48–51 (1992).
[Crossref]

Teramura, T.

Vanherzeele, H.

Yu, G. F.

H. Y. Shen, Y. P. Zhou, W. X. Lin, Z. D. Zeng, R. R. Zeng, G. F. Yu, C. H. Huang, A. D. Jiang, S. Q. Jia, D. Z. Shen, “Second harmonic generation and sum frequency mixing of dual wavelength Nd:YALO3 laser in flux grown KTiOPO4 crystal,” IEEE J. Quantum Electron. 28, 48–51 (1992).
[Crossref]

Zeng, R. R.

H. Y. Shen, Y. P. Zhou, W. X. Lin, Z. D. Zeng, R. R. Zeng, G. F. Yu, C. H. Huang, A. D. Jiang, S. Q. Jia, D. Z. Shen, “Second harmonic generation and sum frequency mixing of dual wavelength Nd:YALO3 laser in flux grown KTiOPO4 crystal,” IEEE J. Quantum Electron. 28, 48–51 (1992).
[Crossref]

Zeng, Z. D.

H. Y. Shen, Y. P. Zhou, W. X. Lin, Z. D. Zeng, R. R. Zeng, G. F. Yu, C. H. Huang, A. D. Jiang, S. Q. Jia, D. Z. Shen, “Second harmonic generation and sum frequency mixing of dual wavelength Nd:YALO3 laser in flux grown KTiOPO4 crystal,” IEEE J. Quantum Electron. 28, 48–51 (1992).
[Crossref]

Zhou, Y. P.

H. Y. Shen, Y. P. Zhou, W. X. Lin, Z. D. Zeng, R. R. Zeng, G. F. Yu, C. H. Huang, A. D. Jiang, S. Q. Jia, D. Z. Shen, “Second harmonic generation and sum frequency mixing of dual wavelength Nd:YALO3 laser in flux grown KTiOPO4 crystal,” IEEE J. Quantum Electron. 28, 48–51 (1992).
[Crossref]

Appl. Opt. (1)

IEEE J. Quantum Electron. (3)

C. G. Bethea, “Megawatt power at 1.318 μ in Nd3+:YAG and simultaneous oscillation at both 1.06 and 1.318 μ,” IEEE J. Quantum Electron. QE-9, 254 (1973).
[Crossref]

H. Y. Shen, Y. P. Zhou, W. X. Lin, Z. D. Zeng, R. R. Zeng, G. F. Yu, C. H. Huang, A. D. Jiang, S. Q. Jia, D. Z. Shen, “Second harmonic generation and sum frequency mixing of dual wavelength Nd:YALO3 laser in flux grown KTiOPO4 crystal,” IEEE J. Quantum Electron. 28, 48–51 (1992).
[Crossref]

J. Marling, “1.05–1.44 μm tunability and performance of the cw Nd3+:YAG laser,” IEEE J. Quantum Electron. QE-14, 56–62 (1978).
[Crossref]

Lincoln Lab. J. (1)

T. H. Jeys, “Development of a mesospheric sodium laser beacon for atmospheric adaptive optics,” Lincoln Lab. J. 4, 133–149 (1991).

Opt. Eng. (1)

R. A. Morgan, F. A. Hopf, N. Peyghambarian, “Dual-frequency Nd:YAG laser for the study and application of nonlinear optical crystals,” Opt. Eng. 26, 1240–1244 (1987).

Opt. Lett. (1)

Other (2)

K. C. Liu, M. G. Cohen, “High-power Nd:YAG laser at 532 nm using intracavity type 11 KTP,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1986), p. 110.

P. Schultz, MIT Lincoln Laboratories, Lexington, Mass. 02173 (personal communication, 1993).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Optical layout of the simultaneous multiple-wavelength, intracavity-summed Nd:YAG laser. The stable resonator oscillator is composed of a +8-m rear reflector and a flat output coupler that reflects IR and transmits the summed emission. A dichroic reduces feedback at 1.06 μm to make oscillation at 1.32 μm possible. The locations of both alternative wave plates are indicated in the schematic, although only one was used at a time, and only data collected with the quarter-wave plate are presented. HR, high reflector; PH, pinhole.

Fig. 2
Fig. 2

Normalized, integrated optogalvanic response of the sodium–neon hollow-cathode lamp as a function of étalon tilt. The squares represent lamp output for a given étalon position averaged over 16 laser shots. The solid curve represents the Doppler profile of 300 °K sodium atoms. Despite considerable scatter, the data indicate resonance with and a laser linewidth comparable with or narrower than the Doppler-broadened absorption.

Fig. 3
Fig. 3

Spectral analysis of laser performance for each of the wavelengths produced in this study, measured with a 200-MHz resolution Fabry–Perot étalon. The 589-nm and 592-nm signals were produced intracavity with KTP, and the others were externally doubled with KD*P. For each wavelength, a single-shot and a smoother 200-shot average are superimposed.

Metrics