Abstract

We propose a three-dimensional optical-memory device in which refractive dot data are recorded directly into a photorefractive crystal. To record a single bit of datum, one focuses a laser beam with an objective lens onto a specific spot in a crystal, thereby changing its refractive index locally as a result of photorefraction. To record in three dimensions, one keeps the objective lens stationary while the crystal is translated. The beam-spot intensity is modulated with a beam shutter according to the logic state of the data point. The recorded data points are read with a phase–contrast microscope objective lens. We present experimental results of three-dimensional recording and reading with a LiNbO3 crystal. The distribution of the refractive index formed by a focused beam is also analyzed with the charge-transport model.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Inouye, S. Kawata, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett. 19, 159–161 (1994).
    [CrossRef] [PubMed]
  2. E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, “Near-field magneto-optics and high-density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
    [CrossRef]
  3. W. E. Moerner, “Molecular electronics for frequency domain optical storage: persistent spectral hole-burning—a review,” J. Mol. Electron. 1, 55–71 (1985).
  4. C. D. Caro, A. Renn, U. P. Wild, “Hole burning, Stark effect, and data storage: 2: holographic recording and detection of spectral holes,” Appl. Opt. 30, 2890–2898 (1991).
    [CrossRef] [PubMed]
  5. L. d'Auria, J. P. Huignard, C. Slezak, E. Spitz, “Experimental holographic read–write memory using 3-D storage,” Appl. Opt. 13, 808–818 (1974).
    [CrossRef]
  6. H.-Y. Li, D. Psaltis, “Volume storage in photorefractive disks,” in Optical Computing and Neural Networks, K. Y. Hsu, H. Liu, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1812, 103–104 (1992).
  7. D. Brady, D. Psaltis, “Information capacity of 3-D holographic data storage,” Opt. Quantum Electron. 25, 597–610 (1993).
    [CrossRef]
  8. A. Aharoni, M. C. Bashaw, L. Hesselink, “Capacity considerations for multiplexed holographic optical data,” in Practical Holography VII: Imaging and Materials, S. A. Benton, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1914, 56–65 (1993).
  9. L. Hesselink, M. C. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, 611–661 (1993).
    [CrossRef]
  10. H. Rajbenbach, S. Bann, J.-P. Huignard, “Long-term readout of photorefractive memories by using a storage/amplification two-crystal configuration,” Opt. Lett. 17, 1712–1714 (1992).
    [CrossRef] [PubMed]
  11. A. Yariv, “Interpage and interpixel cross talk in orthogonal (wavelength-multiplexed) holograms,” Opt. Lett. 18, 652–654 (1993).
    [CrossRef] [PubMed]
  12. Y. Taketomi, J. E. Ford, H. Sasaki, J. Ma, Y. Fainman, S. H. Lee, “Incremental recording for photorefractive hologram multiplexing,” Opt. Lett. 16, 1774–1776 (1991).
    [CrossRef] [PubMed]
  13. D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
    [CrossRef] [PubMed]
  14. J. H. Strickler, W. W. Webb, “Three-dimensional optical data storage in refractive media by two-photon point excitation,” Opt. Lett. 16, 1780–1782 (1991).
    [CrossRef] [PubMed]
  15. Y. Kawata, S. Kawata, “Gain dependence on the external electric field in two-wave coupling with a BSO crystal,” Optik 90, 27–31 (1992).
  16. Y. Kawata, S. Kawata, “Speckle-free image amplification by two-wave coupling in a photorefractive crystal,” Appl. Opt. 32, 730–736 (1993).
    [CrossRef] [PubMed]
  17. Y. Kawata, S. Kawata, S. Minami, “Image amplification with local addressing by two-wave coupling in a Bi12SiO20 crystal by application of dc voltage,” J. Opt. Soc. Am. B 7, 2362–2368 (1990).
    [CrossRef]
  18. M. G. Moharam, T. K. Gaylord, R. Magnusson, “Holographic-grating formation in photorefractive crystals with arbitrary electron-transport lengths,” J. Appl. Phys. 50, 5642–5651 (1979).
    [CrossRef]
  19. J. Feinberg, “Asymmetric self-defocusing of an optical beam from the photorefractive effect,” J. Opt. Soc. Am. 72, 46–51 (1982).
    [CrossRef]
  20. S. Kawata, T. Tanaka, Y. Hashimoto, Y. Kawata, “Three-dimensional confocal optical memory using photorefractive materials,” in Photopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, and Interconnects, R. A. Lesard, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2042, 314–325 (1993).

1994 (1)

1993 (4)

D. Brady, D. Psaltis, “Information capacity of 3-D holographic data storage,” Opt. Quantum Electron. 25, 597–610 (1993).
[CrossRef]

L. Hesselink, M. C. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, 611–661 (1993).
[CrossRef]

A. Yariv, “Interpage and interpixel cross talk in orthogonal (wavelength-multiplexed) holograms,” Opt. Lett. 18, 652–654 (1993).
[CrossRef] [PubMed]

Y. Kawata, S. Kawata, “Speckle-free image amplification by two-wave coupling in a photorefractive crystal,” Appl. Opt. 32, 730–736 (1993).
[CrossRef] [PubMed]

1992 (3)

Y. Kawata, S. Kawata, “Gain dependence on the external electric field in two-wave coupling with a BSO crystal,” Optik 90, 27–31 (1992).

H. Rajbenbach, S. Bann, J.-P. Huignard, “Long-term readout of photorefractive memories by using a storage/amplification two-crystal configuration,” Opt. Lett. 17, 1712–1714 (1992).
[CrossRef] [PubMed]

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, “Near-field magneto-optics and high-density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

1991 (3)

1990 (1)

1989 (1)

D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
[CrossRef] [PubMed]

1985 (1)

W. E. Moerner, “Molecular electronics for frequency domain optical storage: persistent spectral hole-burning—a review,” J. Mol. Electron. 1, 55–71 (1985).

1982 (1)

1979 (1)

M. G. Moharam, T. K. Gaylord, R. Magnusson, “Holographic-grating formation in photorefractive crystals with arbitrary electron-transport lengths,” J. Appl. Phys. 50, 5642–5651 (1979).
[CrossRef]

1974 (1)

Aharoni, A.

A. Aharoni, M. C. Bashaw, L. Hesselink, “Capacity considerations for multiplexed holographic optical data,” in Practical Holography VII: Imaging and Materials, S. A. Benton, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1914, 56–65 (1993).

Bann, S.

Bashaw, M. C.

L. Hesselink, M. C. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, 611–661 (1993).
[CrossRef]

A. Aharoni, M. C. Bashaw, L. Hesselink, “Capacity considerations for multiplexed holographic optical data,” in Practical Holography VII: Imaging and Materials, S. A. Benton, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1914, 56–65 (1993).

Betzig, E.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, “Near-field magneto-optics and high-density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Brady, D.

D. Brady, D. Psaltis, “Information capacity of 3-D holographic data storage,” Opt. Quantum Electron. 25, 597–610 (1993).
[CrossRef]

Caro, C. D.

d'Auria, L.

Fainman, Y.

Feinberg, J.

Finn, P. L.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, “Near-field magneto-optics and high-density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Ford, J. E.

Gaylord, T. K.

M. G. Moharam, T. K. Gaylord, R. Magnusson, “Holographic-grating formation in photorefractive crystals with arbitrary electron-transport lengths,” J. Appl. Phys. 50, 5642–5651 (1979).
[CrossRef]

Gyorgy, E. M.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, “Near-field magneto-optics and high-density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Hashimoto, Y.

S. Kawata, T. Tanaka, Y. Hashimoto, Y. Kawata, “Three-dimensional confocal optical memory using photorefractive materials,” in Photopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, and Interconnects, R. A. Lesard, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2042, 314–325 (1993).

Hesselink, L.

L. Hesselink, M. C. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, 611–661 (1993).
[CrossRef]

A. Aharoni, M. C. Bashaw, L. Hesselink, “Capacity considerations for multiplexed holographic optical data,” in Practical Holography VII: Imaging and Materials, S. A. Benton, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1914, 56–65 (1993).

Huignard, J. P.

Huignard, J.-P.

Inouye, Y.

Kawata, S.

Y. Inouye, S. Kawata, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett. 19, 159–161 (1994).
[CrossRef] [PubMed]

Y. Kawata, S. Kawata, “Speckle-free image amplification by two-wave coupling in a photorefractive crystal,” Appl. Opt. 32, 730–736 (1993).
[CrossRef] [PubMed]

Y. Kawata, S. Kawata, “Gain dependence on the external electric field in two-wave coupling with a BSO crystal,” Optik 90, 27–31 (1992).

Y. Kawata, S. Kawata, S. Minami, “Image amplification with local addressing by two-wave coupling in a Bi12SiO20 crystal by application of dc voltage,” J. Opt. Soc. Am. B 7, 2362–2368 (1990).
[CrossRef]

S. Kawata, T. Tanaka, Y. Hashimoto, Y. Kawata, “Three-dimensional confocal optical memory using photorefractive materials,” in Photopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, and Interconnects, R. A. Lesard, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2042, 314–325 (1993).

Kawata, Y.

Y. Kawata, S. Kawata, “Speckle-free image amplification by two-wave coupling in a photorefractive crystal,” Appl. Opt. 32, 730–736 (1993).
[CrossRef] [PubMed]

Y. Kawata, S. Kawata, “Gain dependence on the external electric field in two-wave coupling with a BSO crystal,” Optik 90, 27–31 (1992).

Y. Kawata, S. Kawata, S. Minami, “Image amplification with local addressing by two-wave coupling in a Bi12SiO20 crystal by application of dc voltage,” J. Opt. Soc. Am. B 7, 2362–2368 (1990).
[CrossRef]

S. Kawata, T. Tanaka, Y. Hashimoto, Y. Kawata, “Three-dimensional confocal optical memory using photorefractive materials,” in Photopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, and Interconnects, R. A. Lesard, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2042, 314–325 (1993).

Lee, S. H.

Li, H.-Y.

H.-Y. Li, D. Psaltis, “Volume storage in photorefractive disks,” in Optical Computing and Neural Networks, K. Y. Hsu, H. Liu, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1812, 103–104 (1992).

Ma, J.

Magnusson, R.

M. G. Moharam, T. K. Gaylord, R. Magnusson, “Holographic-grating formation in photorefractive crystals with arbitrary electron-transport lengths,” J. Appl. Phys. 50, 5642–5651 (1979).
[CrossRef]

Minami, S.

Moerner, W. E.

W. E. Moerner, “Molecular electronics for frequency domain optical storage: persistent spectral hole-burning—a review,” J. Mol. Electron. 1, 55–71 (1985).

Moharam, M. G.

M. G. Moharam, T. K. Gaylord, R. Magnusson, “Holographic-grating formation in photorefractive crystals with arbitrary electron-transport lengths,” J. Appl. Phys. 50, 5642–5651 (1979).
[CrossRef]

Parthenopoulos, D. A.

D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
[CrossRef] [PubMed]

Psaltis, D.

D. Brady, D. Psaltis, “Information capacity of 3-D holographic data storage,” Opt. Quantum Electron. 25, 597–610 (1993).
[CrossRef]

H.-Y. Li, D. Psaltis, “Volume storage in photorefractive disks,” in Optical Computing and Neural Networks, K. Y. Hsu, H. Liu, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1812, 103–104 (1992).

Rajbenbach, H.

Renn, A.

Rentzepis, P. M.

D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
[CrossRef] [PubMed]

Sasaki, H.

Slezak, C.

Spitz, E.

Strickler, J. H.

Taketomi, Y.

Tanaka, T.

S. Kawata, T. Tanaka, Y. Hashimoto, Y. Kawata, “Three-dimensional confocal optical memory using photorefractive materials,” in Photopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, and Interconnects, R. A. Lesard, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2042, 314–325 (1993).

Trautman, J. K.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, “Near-field magneto-optics and high-density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Webb, W. W.

Wild, U. P.

Wolfe, R.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, “Near-field magneto-optics and high-density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Yariv, A.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, “Near-field magneto-optics and high-density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

J. Appl. Phys. (1)

M. G. Moharam, T. K. Gaylord, R. Magnusson, “Holographic-grating formation in photorefractive crystals with arbitrary electron-transport lengths,” J. Appl. Phys. 50, 5642–5651 (1979).
[CrossRef]

J. Mol. Electron. (1)

W. E. Moerner, “Molecular electronics for frequency domain optical storage: persistent spectral hole-burning—a review,” J. Mol. Electron. 1, 55–71 (1985).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Opt. Lett. (5)

Opt. Quantum Electron. (2)

L. Hesselink, M. C. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, 611–661 (1993).
[CrossRef]

D. Brady, D. Psaltis, “Information capacity of 3-D holographic data storage,” Opt. Quantum Electron. 25, 597–610 (1993).
[CrossRef]

Optik (1)

Y. Kawata, S. Kawata, “Gain dependence on the external electric field in two-wave coupling with a BSO crystal,” Optik 90, 27–31 (1992).

Science (1)

D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
[CrossRef] [PubMed]

Other (3)

A. Aharoni, M. C. Bashaw, L. Hesselink, “Capacity considerations for multiplexed holographic optical data,” in Practical Holography VII: Imaging and Materials, S. A. Benton, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1914, 56–65 (1993).

H.-Y. Li, D. Psaltis, “Volume storage in photorefractive disks,” in Optical Computing and Neural Networks, K. Y. Hsu, H. Liu, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1812, 103–104 (1992).

S. Kawata, T. Tanaka, Y. Hashimoto, Y. Kawata, “Three-dimensional confocal optical memory using photorefractive materials,” in Photopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, and Interconnects, R. A. Lesard, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2042, 314–325 (1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical system used to record and read bit data in a photorefractive crystal. Recording uses an ordinary objective lens, whereas reading uses a phase–contrast objective lens.

Fig. 2
Fig. 2

Mechanism used to record bit-data information in a photorefractive crystal. The electrons in the vicinity of the beam focus are excited from the donor level to the conduction band. The excited electrons diffuse and drift until they recombine with the now-vacant donor sites. The local charge distribution generates the local electric fields. As a result, the local electric field produces a refractive dot at the location of the focus of the laser beam.

Fig. 3
Fig. 3

Three layers of bit data recorded in an Fe-doped LiNbO3 crystal: (a), (b), and (c) show the top, middle, and bottom layers, respectively. The distance between adjacent layers is approximately 22 μm, and the lateral distance between refractile dots in a layer is 4 μm.

Fig. 4
Fig. 4

Calculated refractive-index distribution in (a) the LiNbO3 crystal as a result of the intensity distribution of (b) the focused beam. Both distributions are shown in a log scale. The line drawing in (b) is a schematic representation of the recorded-dot profile of the refractive-index distribution along the z axis.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

J ( r , t ) = q D n ( r , t ) + q μ n ( r , t ) E sc ( r , t ) + e ˆ c J ph ( r , t ) ,
J ph ( r ) = I ( r ) exp ( z L ph ) ,
n ( r , t ) t = g ( r ) n ( r , t ) n D τ + 1 q J ( r , t ) ,
[ Δ χ ] = 0 [ r [ R ] E sc [ r ] ,
Δ n = 1 2 n 0 0 e * [ Δ χ ] e ,

Metrics