Abstract

The nonlinear oscillations of photorefractive ring resonators that contain a microlens array are shown to permit controllable optical image-contrast compression and expansion.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. K. Liu, “Photorefractive crystal compresses dynamic range of images,” NASA Tech. Brief 91-10 (NASA, Baltimore, Md., 1991) pp. 24–25.
  2. M. Snowbell, B. Fischer, “Dynamic range compression of images by two-wave mixing in photorefractive materials,” Appl. Opt. 33, 4480–4486 (1994).
    [CrossRef] [PubMed]
  3. S. Sternklar, S. Weiss, B. Fischer, “Optical information processing with the double phase conjugate mirror,” Opt. Eng. 26, 423–427 (1987).
  4. B. M. Jost, B. E. A. Saleh, “Nonlinear dynamics of single-mode oscillations in photorefractive ring resonators,” J. Opt. Soc. Am. B 11, 1864–1871 (1994).
    [CrossRef]
  5. S. Weiss, B. Fischer, “Dynamics of photorefractive nonlinear two-beam coupling and feedback effects,” Opt. Quantum Electron. 22, S17–S46 (1990).

1994 (2)

1990 (1)

S. Weiss, B. Fischer, “Dynamics of photorefractive nonlinear two-beam coupling and feedback effects,” Opt. Quantum Electron. 22, S17–S46 (1990).

1987 (1)

S. Sternklar, S. Weiss, B. Fischer, “Optical information processing with the double phase conjugate mirror,” Opt. Eng. 26, 423–427 (1987).

Fischer, B.

M. Snowbell, B. Fischer, “Dynamic range compression of images by two-wave mixing in photorefractive materials,” Appl. Opt. 33, 4480–4486 (1994).
[CrossRef] [PubMed]

S. Weiss, B. Fischer, “Dynamics of photorefractive nonlinear two-beam coupling and feedback effects,” Opt. Quantum Electron. 22, S17–S46 (1990).

S. Sternklar, S. Weiss, B. Fischer, “Optical information processing with the double phase conjugate mirror,” Opt. Eng. 26, 423–427 (1987).

Jost, B. M.

Liu, H. K.

H. K. Liu, “Photorefractive crystal compresses dynamic range of images,” NASA Tech. Brief 91-10 (NASA, Baltimore, Md., 1991) pp. 24–25.

Saleh, B. E. A.

Snowbell, M.

Sternklar, S.

S. Sternklar, S. Weiss, B. Fischer, “Optical information processing with the double phase conjugate mirror,” Opt. Eng. 26, 423–427 (1987).

Weiss, S.

S. Weiss, B. Fischer, “Dynamics of photorefractive nonlinear two-beam coupling and feedback effects,” Opt. Quantum Electron. 22, S17–S46 (1990).

S. Sternklar, S. Weiss, B. Fischer, “Optical information processing with the double phase conjugate mirror,” Opt. Eng. 26, 423–427 (1987).

Appl. Opt. (1)

J. Opt. Soc. Am. B (1)

Opt. Eng. (1)

S. Sternklar, S. Weiss, B. Fischer, “Optical information processing with the double phase conjugate mirror,” Opt. Eng. 26, 423–427 (1987).

Opt. Quantum Electron. (1)

S. Weiss, B. Fischer, “Dynamics of photorefractive nonlinear two-beam coupling and feedback effects,” Opt. Quantum Electron. 22, S17–S46 (1990).

Other (1)

H. K. Liu, “Photorefractive crystal compresses dynamic range of images,” NASA Tech. Brief 91-10 (NASA, Baltimore, Md., 1991) pp. 24–25.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Photorefractive ring multiresonator with (a) the image on the pump beam, (b) the image on an injected probe beam.

Fig. 2
Fig. 2

Output resonator irradiance as a function of the input-image irradiance at t = 1, 2, 3, 4, and 10 s (lower to upper curves, respectively) that corresponds to the response of the system shown in Fig. 1(a).

Fig. 3
Fig. 3

Steady-state irradiances that correspond to Fig. 1(b) (a) with different values of positive a: 0.1 (solid curve), 0.01 (dashed curve), and 0.01 (dotted curve); (b) with different values of negative a: −1.5 (solid curve), −1.0 (dashed curve), and −0.5 (dotted curve).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d υ d t = a υ υ 3 + s ( 1 + υ 2 ) ,
a = ω P c 4 π L c α L n 1 γ l c r 1 ,
I o ( t ) = I o ( 0 ) exp ( 2 I i a t / f c ) × { 1 + I o ( 0 ) I i a [ exp ( 2 I i a t / f c ) 1 ] } 1 ,
I o / I i = a ,
I o I i = ( 1 + I o a I o ) 2 ,

Metrics