Abstract

In all-optical processors, enhancement of image details is the result of high-pass filtering. We describe an optoelectronic processor in which detail enhancement results from the digitally calculated difference between an original input image and its low-pass filtered version. The low-pass filtering is realized through the rank-order median and the morphological opening and closing operations calculated by use of the optical convolver. It is shown that the normalized difference between the morphological white and black top hats enhances bright and dark image details analogously to the rank-order unsharp masking.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Fitch, E. J. Coyle, N. C. Gallagher, “Median filtering by threshold decomposition,” IEEE Trans. Acoust. Speech Signal Process. ASSP-32, 1183–1188 (1984).
    [CrossRef]
  2. P. D. Wendt, E. J. Coyle, N. C. Gallagher, “Stack filters,” IEEE Trans. Acoust. Speech Signal Process. ASSP-34, 898–911 (1986).
    [CrossRef]
  3. V. Kim, L. Yaroslavskii, “Rank algorithms for picture processing,” Comput. Vis. Graph. Image Process. 35, 234–258 (1986).
    [CrossRef]
  4. I. Pitas, A. N. Venetsanopoulos, Nonlinear Digital Filters. Principles and Applications (Kluwer, Dordrecht, The Netherlands, 1990), pp. 63–150.
  5. J. Serra, Image Analysis and Mathematical Morphology (Academic, London, 1982).
  6. J. Serra, “Introduction to morphological filters,” in Image Analysis and Mathematical Morphology. Theoretical Advances, J. Serra, ed. (Academic, London, 1988), pp. 101–114.
  7. E. R. Dougherty, R. P. Loce, “Efficient design strategies for the optimal binary digital morphological filter: probabilities, constraints, and structuring-element libraries,” in Mathematical Morphology in Image Processing, E. R. Dougherty, ed. (Dekker, New York, 1993), pp. 43–120.
  8. P. Maragos, R. W. Schafer, “Morphological filters. I. Their set-theoretic analysis and relations to linear shift-invariant filters,” “Morphological filters. II. Their relations to median, order-statistics, and stack filters,” IEEE Trans. Acoust. Speech Signal Process. ASSP-35, 1153–1184 (1987).
    [CrossRef]
  9. P. Maragos, “Tutorial on advances in morphological image processing and analysis,” Opt. Eng. 26, 623–632 (1987).
  10. E. Ochoa, J. P. Allebach, D. W. Sweeney, “Optical median filtering using threshold decomposition,” Appl. Opt. 26, 252–260 (1987).
    [CrossRef] [PubMed]
  11. J. M. Hereford, W. T. Rhodes, “Nonlinear optical image filtering by time-sequential threshold decomposition,” Opt. Eng. 27, 274–279 (1988).
  12. Y. Li, A. Kostrzewski, D. H. Kim, G. Eichmann, “Compact parallel real-time programmable optical morphological image processor,” Opt. Lett. 14, 981–983 (1989).
    [CrossRef] [PubMed]
  13. P. Cambon, J.-L. Bougrenet de la Tocknaye, “Mathematical morphology processor using ferroelectric liquid crystal light valves: principle,” Appl. Opt. 28, 3456–3460 (1989).
    [CrossRef] [PubMed]
  14. B. D. Duncan, T.-C. Poon, R. J. Pieper, “Real-time nonlinear image processing using an active optical scanning technique,” Opt. Laser Technol. 23, 19–24 (1991).
    [CrossRef]
  15. E. Botha, J. Richards, D. Casasent, “Optical laboratory morphological inspection processor,” Appl. Opt. 28, 5342–5350 (1989).
    [CrossRef] [PubMed]
  16. D. Casasent, R. Schaefer, R. Sturgill, “Optical hit-miss morphological transform,” Appl. Opt. 31, 6255–6263 (1992).
    [CrossRef] [PubMed]
  17. V. Kober, T. Cichocki, M. Gedziorowski, T. Szoplik, “Optical-digital method of local histogram calculation by threshold decomposition,” Appl. Opt. 32, 692–698 (1993).
    [CrossRef] [PubMed]
  18. V. Kober, J. Garcia, T. Szoplik, L. P. Yaroslavsky, “Nonlinear image processing based on optical-digital method of local histogram calculation,” Intl. J. Opt. Comput. 2, 367–383 (1993).
  19. J. Garcia, T. Szoplik, C. Ferreira, “Optoelectronic morphological image processor,” Opt. Lett. 18, 1952–1954 (1993).
    [CrossRef] [PubMed]
  20. J. L. Tasto, W. T. Rhodes, “Noise immunity of threshold decomposition optoelectronic order-statistic filtering,” Opt. Lett. 18, 1349–1351 (1993).
    [CrossRef] [PubMed]
  21. Y. S. Fong, C. A. Pomalaza-Ráez, X. H. Wang, “Comparison study of nonlinear filters in image processing applications,” Opt. Eng. 28, 749–760 (1989).
  22. W. F. Schreiber, “Wirephoto quality improvement by unsharp masking,” J. Pattern Recog. 2, 111–121 (1970).
  23. F. Meyer, “Contrast feature extraction,” Pract. Metallogr. 8, 374–380 (1978).
  24. Seiko Epson Corporation, Epson liquid-crystal video projector VP-100PS service manual (Seiko Epson Corporation, Nagano, Japan, 1990).
  25. V. Laude, S. Mazé, P. Chavel, Ph. Réfrégier, “Amplitude and phase coding measurements of a liquid crystal television,” Opt. Commun. 103, 33–38 (1993).
    [CrossRef]
  26. M. Osinski, Center for High Technology Materials, University of New Mexico, Albuquerque, N.M. 87131-6081 (personal communication).
  27. W. E. Howard, “Thin-film-transistor/liquid crystal display technology: An introduction,” IBM J. Res. Dev. 36(1), 3–10 (1992).
    [CrossRef]
  28. J. Knopp, M. F. Becker, “Generalized model for noncoherent optical convolvers and correlators,” Appl. Opt. 17, 984–985 (1978).
    [CrossRef] [PubMed]
  29. K. Raj, D. W. Prather, R. A. Athale, J. N. Mait, “Performance analysis of optical shadow-casting correlators,” Appl. Opt. 32, 3108–3112 (1993).
    [CrossRef] [PubMed]
  30. M. Gedziorowski, T. Szoplik, C. Ferreira, “Resolution of a lensless shadow casting correlator with partially coherent illumination,” Opt. Commun. 106, 167–172 (1994).
    [CrossRef]
  31. E. J. Coyle, J.-H. Lin, “Stack filters and the mean absolute error criterion,” IEEE Trans. Acoust. Speech Signal Process. 36, 1244–1254 (1988).
    [CrossRef]

1994 (1)

M. Gedziorowski, T. Szoplik, C. Ferreira, “Resolution of a lensless shadow casting correlator with partially coherent illumination,” Opt. Commun. 106, 167–172 (1994).
[CrossRef]

1993 (6)

1992 (2)

D. Casasent, R. Schaefer, R. Sturgill, “Optical hit-miss morphological transform,” Appl. Opt. 31, 6255–6263 (1992).
[CrossRef] [PubMed]

W. E. Howard, “Thin-film-transistor/liquid crystal display technology: An introduction,” IBM J. Res. Dev. 36(1), 3–10 (1992).
[CrossRef]

1991 (1)

B. D. Duncan, T.-C. Poon, R. J. Pieper, “Real-time nonlinear image processing using an active optical scanning technique,” Opt. Laser Technol. 23, 19–24 (1991).
[CrossRef]

1989 (4)

1988 (2)

J. M. Hereford, W. T. Rhodes, “Nonlinear optical image filtering by time-sequential threshold decomposition,” Opt. Eng. 27, 274–279 (1988).

E. J. Coyle, J.-H. Lin, “Stack filters and the mean absolute error criterion,” IEEE Trans. Acoust. Speech Signal Process. 36, 1244–1254 (1988).
[CrossRef]

1987 (3)

P. Maragos, R. W. Schafer, “Morphological filters. I. Their set-theoretic analysis and relations to linear shift-invariant filters,” “Morphological filters. II. Their relations to median, order-statistics, and stack filters,” IEEE Trans. Acoust. Speech Signal Process. ASSP-35, 1153–1184 (1987).
[CrossRef]

P. Maragos, “Tutorial on advances in morphological image processing and analysis,” Opt. Eng. 26, 623–632 (1987).

E. Ochoa, J. P. Allebach, D. W. Sweeney, “Optical median filtering using threshold decomposition,” Appl. Opt. 26, 252–260 (1987).
[CrossRef] [PubMed]

1986 (2)

P. D. Wendt, E. J. Coyle, N. C. Gallagher, “Stack filters,” IEEE Trans. Acoust. Speech Signal Process. ASSP-34, 898–911 (1986).
[CrossRef]

V. Kim, L. Yaroslavskii, “Rank algorithms for picture processing,” Comput. Vis. Graph. Image Process. 35, 234–258 (1986).
[CrossRef]

1984 (1)

J. P. Fitch, E. J. Coyle, N. C. Gallagher, “Median filtering by threshold decomposition,” IEEE Trans. Acoust. Speech Signal Process. ASSP-32, 1183–1188 (1984).
[CrossRef]

1978 (2)

1970 (1)

W. F. Schreiber, “Wirephoto quality improvement by unsharp masking,” J. Pattern Recog. 2, 111–121 (1970).

Allebach, J. P.

Athale, R. A.

Becker, M. F.

Botha, E.

Bougrenet de la Tocknaye, J.-L.

Cambon, P.

Casasent, D.

Chavel, P.

V. Laude, S. Mazé, P. Chavel, Ph. Réfrégier, “Amplitude and phase coding measurements of a liquid crystal television,” Opt. Commun. 103, 33–38 (1993).
[CrossRef]

Cichocki, T.

Coyle, E. J.

E. J. Coyle, J.-H. Lin, “Stack filters and the mean absolute error criterion,” IEEE Trans. Acoust. Speech Signal Process. 36, 1244–1254 (1988).
[CrossRef]

P. D. Wendt, E. J. Coyle, N. C. Gallagher, “Stack filters,” IEEE Trans. Acoust. Speech Signal Process. ASSP-34, 898–911 (1986).
[CrossRef]

J. P. Fitch, E. J. Coyle, N. C. Gallagher, “Median filtering by threshold decomposition,” IEEE Trans. Acoust. Speech Signal Process. ASSP-32, 1183–1188 (1984).
[CrossRef]

Dougherty, E. R.

E. R. Dougherty, R. P. Loce, “Efficient design strategies for the optimal binary digital morphological filter: probabilities, constraints, and structuring-element libraries,” in Mathematical Morphology in Image Processing, E. R. Dougherty, ed. (Dekker, New York, 1993), pp. 43–120.

Duncan, B. D.

B. D. Duncan, T.-C. Poon, R. J. Pieper, “Real-time nonlinear image processing using an active optical scanning technique,” Opt. Laser Technol. 23, 19–24 (1991).
[CrossRef]

Eichmann, G.

Ferreira, C.

M. Gedziorowski, T. Szoplik, C. Ferreira, “Resolution of a lensless shadow casting correlator with partially coherent illumination,” Opt. Commun. 106, 167–172 (1994).
[CrossRef]

J. Garcia, T. Szoplik, C. Ferreira, “Optoelectronic morphological image processor,” Opt. Lett. 18, 1952–1954 (1993).
[CrossRef] [PubMed]

Fitch, J. P.

J. P. Fitch, E. J. Coyle, N. C. Gallagher, “Median filtering by threshold decomposition,” IEEE Trans. Acoust. Speech Signal Process. ASSP-32, 1183–1188 (1984).
[CrossRef]

Fong, Y. S.

Y. S. Fong, C. A. Pomalaza-Ráez, X. H. Wang, “Comparison study of nonlinear filters in image processing applications,” Opt. Eng. 28, 749–760 (1989).

Gallagher, N. C.

P. D. Wendt, E. J. Coyle, N. C. Gallagher, “Stack filters,” IEEE Trans. Acoust. Speech Signal Process. ASSP-34, 898–911 (1986).
[CrossRef]

J. P. Fitch, E. J. Coyle, N. C. Gallagher, “Median filtering by threshold decomposition,” IEEE Trans. Acoust. Speech Signal Process. ASSP-32, 1183–1188 (1984).
[CrossRef]

Garcia, J.

J. Garcia, T. Szoplik, C. Ferreira, “Optoelectronic morphological image processor,” Opt. Lett. 18, 1952–1954 (1993).
[CrossRef] [PubMed]

V. Kober, J. Garcia, T. Szoplik, L. P. Yaroslavsky, “Nonlinear image processing based on optical-digital method of local histogram calculation,” Intl. J. Opt. Comput. 2, 367–383 (1993).

Gedziorowski, M.

M. Gedziorowski, T. Szoplik, C. Ferreira, “Resolution of a lensless shadow casting correlator with partially coherent illumination,” Opt. Commun. 106, 167–172 (1994).
[CrossRef]

V. Kober, T. Cichocki, M. Gedziorowski, T. Szoplik, “Optical-digital method of local histogram calculation by threshold decomposition,” Appl. Opt. 32, 692–698 (1993).
[CrossRef] [PubMed]

Hereford, J. M.

J. M. Hereford, W. T. Rhodes, “Nonlinear optical image filtering by time-sequential threshold decomposition,” Opt. Eng. 27, 274–279 (1988).

Howard, W. E.

W. E. Howard, “Thin-film-transistor/liquid crystal display technology: An introduction,” IBM J. Res. Dev. 36(1), 3–10 (1992).
[CrossRef]

Kim, D. H.

Kim, V.

V. Kim, L. Yaroslavskii, “Rank algorithms for picture processing,” Comput. Vis. Graph. Image Process. 35, 234–258 (1986).
[CrossRef]

Knopp, J.

Kober, V.

V. Kober, T. Cichocki, M. Gedziorowski, T. Szoplik, “Optical-digital method of local histogram calculation by threshold decomposition,” Appl. Opt. 32, 692–698 (1993).
[CrossRef] [PubMed]

V. Kober, J. Garcia, T. Szoplik, L. P. Yaroslavsky, “Nonlinear image processing based on optical-digital method of local histogram calculation,” Intl. J. Opt. Comput. 2, 367–383 (1993).

Kostrzewski, A.

Laude, V.

V. Laude, S. Mazé, P. Chavel, Ph. Réfrégier, “Amplitude and phase coding measurements of a liquid crystal television,” Opt. Commun. 103, 33–38 (1993).
[CrossRef]

Li, Y.

Lin, J.-H.

E. J. Coyle, J.-H. Lin, “Stack filters and the mean absolute error criterion,” IEEE Trans. Acoust. Speech Signal Process. 36, 1244–1254 (1988).
[CrossRef]

Loce, R. P.

E. R. Dougherty, R. P. Loce, “Efficient design strategies for the optimal binary digital morphological filter: probabilities, constraints, and structuring-element libraries,” in Mathematical Morphology in Image Processing, E. R. Dougherty, ed. (Dekker, New York, 1993), pp. 43–120.

Mait, J. N.

Maragos, P.

P. Maragos, R. W. Schafer, “Morphological filters. I. Their set-theoretic analysis and relations to linear shift-invariant filters,” “Morphological filters. II. Their relations to median, order-statistics, and stack filters,” IEEE Trans. Acoust. Speech Signal Process. ASSP-35, 1153–1184 (1987).
[CrossRef]

P. Maragos, “Tutorial on advances in morphological image processing and analysis,” Opt. Eng. 26, 623–632 (1987).

Mazé, S.

V. Laude, S. Mazé, P. Chavel, Ph. Réfrégier, “Amplitude and phase coding measurements of a liquid crystal television,” Opt. Commun. 103, 33–38 (1993).
[CrossRef]

Meyer, F.

F. Meyer, “Contrast feature extraction,” Pract. Metallogr. 8, 374–380 (1978).

Ochoa, E.

Osinski, M.

M. Osinski, Center for High Technology Materials, University of New Mexico, Albuquerque, N.M. 87131-6081 (personal communication).

Pieper, R. J.

B. D. Duncan, T.-C. Poon, R. J. Pieper, “Real-time nonlinear image processing using an active optical scanning technique,” Opt. Laser Technol. 23, 19–24 (1991).
[CrossRef]

Pitas, I.

I. Pitas, A. N. Venetsanopoulos, Nonlinear Digital Filters. Principles and Applications (Kluwer, Dordrecht, The Netherlands, 1990), pp. 63–150.

Pomalaza-Ráez, C. A.

Y. S. Fong, C. A. Pomalaza-Ráez, X. H. Wang, “Comparison study of nonlinear filters in image processing applications,” Opt. Eng. 28, 749–760 (1989).

Poon, T.-C.

B. D. Duncan, T.-C. Poon, R. J. Pieper, “Real-time nonlinear image processing using an active optical scanning technique,” Opt. Laser Technol. 23, 19–24 (1991).
[CrossRef]

Prather, D. W.

Raj, K.

Réfrégier, Ph.

V. Laude, S. Mazé, P. Chavel, Ph. Réfrégier, “Amplitude and phase coding measurements of a liquid crystal television,” Opt. Commun. 103, 33–38 (1993).
[CrossRef]

Rhodes, W. T.

J. L. Tasto, W. T. Rhodes, “Noise immunity of threshold decomposition optoelectronic order-statistic filtering,” Opt. Lett. 18, 1349–1351 (1993).
[CrossRef] [PubMed]

J. M. Hereford, W. T. Rhodes, “Nonlinear optical image filtering by time-sequential threshold decomposition,” Opt. Eng. 27, 274–279 (1988).

Richards, J.

Schaefer, R.

Schafer, R. W.

P. Maragos, R. W. Schafer, “Morphological filters. I. Their set-theoretic analysis and relations to linear shift-invariant filters,” “Morphological filters. II. Their relations to median, order-statistics, and stack filters,” IEEE Trans. Acoust. Speech Signal Process. ASSP-35, 1153–1184 (1987).
[CrossRef]

Schreiber, W. F.

W. F. Schreiber, “Wirephoto quality improvement by unsharp masking,” J. Pattern Recog. 2, 111–121 (1970).

Serra, J.

J. Serra, Image Analysis and Mathematical Morphology (Academic, London, 1982).

J. Serra, “Introduction to morphological filters,” in Image Analysis and Mathematical Morphology. Theoretical Advances, J. Serra, ed. (Academic, London, 1988), pp. 101–114.

Sturgill, R.

Sweeney, D. W.

Szoplik, T.

M. Gedziorowski, T. Szoplik, C. Ferreira, “Resolution of a lensless shadow casting correlator with partially coherent illumination,” Opt. Commun. 106, 167–172 (1994).
[CrossRef]

V. Kober, T. Cichocki, M. Gedziorowski, T. Szoplik, “Optical-digital method of local histogram calculation by threshold decomposition,” Appl. Opt. 32, 692–698 (1993).
[CrossRef] [PubMed]

V. Kober, J. Garcia, T. Szoplik, L. P. Yaroslavsky, “Nonlinear image processing based on optical-digital method of local histogram calculation,” Intl. J. Opt. Comput. 2, 367–383 (1993).

J. Garcia, T. Szoplik, C. Ferreira, “Optoelectronic morphological image processor,” Opt. Lett. 18, 1952–1954 (1993).
[CrossRef] [PubMed]

Tasto, J. L.

Venetsanopoulos, A. N.

I. Pitas, A. N. Venetsanopoulos, Nonlinear Digital Filters. Principles and Applications (Kluwer, Dordrecht, The Netherlands, 1990), pp. 63–150.

Wang, X. H.

Y. S. Fong, C. A. Pomalaza-Ráez, X. H. Wang, “Comparison study of nonlinear filters in image processing applications,” Opt. Eng. 28, 749–760 (1989).

Wendt, P. D.

P. D. Wendt, E. J. Coyle, N. C. Gallagher, “Stack filters,” IEEE Trans. Acoust. Speech Signal Process. ASSP-34, 898–911 (1986).
[CrossRef]

Yaroslavskii, L.

V. Kim, L. Yaroslavskii, “Rank algorithms for picture processing,” Comput. Vis. Graph. Image Process. 35, 234–258 (1986).
[CrossRef]

Yaroslavsky, L. P.

V. Kober, J. Garcia, T. Szoplik, L. P. Yaroslavsky, “Nonlinear image processing based on optical-digital method of local histogram calculation,” Intl. J. Opt. Comput. 2, 367–383 (1993).

Appl. Opt. (7)

Comput. Vis. Graph. Image Process. (1)

V. Kim, L. Yaroslavskii, “Rank algorithms for picture processing,” Comput. Vis. Graph. Image Process. 35, 234–258 (1986).
[CrossRef]

IBM J. Res. Dev. (1)

W. E. Howard, “Thin-film-transistor/liquid crystal display technology: An introduction,” IBM J. Res. Dev. 36(1), 3–10 (1992).
[CrossRef]

IEEE Trans. Acoust. Speech Signal Process. (4)

E. J. Coyle, J.-H. Lin, “Stack filters and the mean absolute error criterion,” IEEE Trans. Acoust. Speech Signal Process. 36, 1244–1254 (1988).
[CrossRef]

J. P. Fitch, E. J. Coyle, N. C. Gallagher, “Median filtering by threshold decomposition,” IEEE Trans. Acoust. Speech Signal Process. ASSP-32, 1183–1188 (1984).
[CrossRef]

P. D. Wendt, E. J. Coyle, N. C. Gallagher, “Stack filters,” IEEE Trans. Acoust. Speech Signal Process. ASSP-34, 898–911 (1986).
[CrossRef]

P. Maragos, R. W. Schafer, “Morphological filters. I. Their set-theoretic analysis and relations to linear shift-invariant filters,” “Morphological filters. II. Their relations to median, order-statistics, and stack filters,” IEEE Trans. Acoust. Speech Signal Process. ASSP-35, 1153–1184 (1987).
[CrossRef]

Intl. J. Opt. Comput. (1)

V. Kober, J. Garcia, T. Szoplik, L. P. Yaroslavsky, “Nonlinear image processing based on optical-digital method of local histogram calculation,” Intl. J. Opt. Comput. 2, 367–383 (1993).

J. Pattern Recog. (1)

W. F. Schreiber, “Wirephoto quality improvement by unsharp masking,” J. Pattern Recog. 2, 111–121 (1970).

Opt. Commun. (2)

V. Laude, S. Mazé, P. Chavel, Ph. Réfrégier, “Amplitude and phase coding measurements of a liquid crystal television,” Opt. Commun. 103, 33–38 (1993).
[CrossRef]

M. Gedziorowski, T. Szoplik, C. Ferreira, “Resolution of a lensless shadow casting correlator with partially coherent illumination,” Opt. Commun. 106, 167–172 (1994).
[CrossRef]

Opt. Eng. (3)

Y. S. Fong, C. A. Pomalaza-Ráez, X. H. Wang, “Comparison study of nonlinear filters in image processing applications,” Opt. Eng. 28, 749–760 (1989).

J. M. Hereford, W. T. Rhodes, “Nonlinear optical image filtering by time-sequential threshold decomposition,” Opt. Eng. 27, 274–279 (1988).

P. Maragos, “Tutorial on advances in morphological image processing and analysis,” Opt. Eng. 26, 623–632 (1987).

Opt. Laser Technol. (1)

B. D. Duncan, T.-C. Poon, R. J. Pieper, “Real-time nonlinear image processing using an active optical scanning technique,” Opt. Laser Technol. 23, 19–24 (1991).
[CrossRef]

Opt. Lett. (3)

Pract. Metallogr. (1)

F. Meyer, “Contrast feature extraction,” Pract. Metallogr. 8, 374–380 (1978).

Other (6)

Seiko Epson Corporation, Epson liquid-crystal video projector VP-100PS service manual (Seiko Epson Corporation, Nagano, Japan, 1990).

M. Osinski, Center for High Technology Materials, University of New Mexico, Albuquerque, N.M. 87131-6081 (personal communication).

I. Pitas, A. N. Venetsanopoulos, Nonlinear Digital Filters. Principles and Applications (Kluwer, Dordrecht, The Netherlands, 1990), pp. 63–150.

J. Serra, Image Analysis and Mathematical Morphology (Academic, London, 1982).

J. Serra, “Introduction to morphological filters,” in Image Analysis and Mathematical Morphology. Theoretical Advances, J. Serra, ed. (Academic, London, 1988), pp. 101–114.

E. R. Dougherty, R. P. Loce, “Efficient design strategies for the optimal binary digital morphological filter: probabilities, constraints, and structuring-element libraries,” in Mathematical Morphology in Image Processing, E. R. Dougherty, ed. (Dekker, New York, 1993), pp. 43–120.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Block diagram of the morphological optoelectronic image processor. Operations are shown in circles, and data arrays are shown in squares.

Fig. 2
Fig. 2

Experimental results of digital and optoelectronic calculations: (a) input image of 256 × 256 pixels with 16 gray levels, (b) digital median filtration with a square binary kernel of 5 × 5 pixels [(c)–(h) are also obtained with a square binary kernel of 5 × 5 pixels] (c) optical median filtration, (d) digital unsharp masking, (e) optical unsharp masking, (f) optical morphological black top hat, (g) optical morphological white top hat, (h) normalized difference of optical white and black top hats.

Tables (1)

Tables Icon

Table 1 Values of Experimental Parametersa

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

V ( k ) = q = 1 Q - 1 X q ( k ) ,
X q ( k ) = { 1 if V ( k ) q 0 otherwise .
Y ( k ) = mean { S [ V ( k ) ] } + G ( V ( k ) - mean { S [ V ( k ) ] } ) ,
UM [ V ( k ) ] = A + G ( V ( k ) - med { S [ V ( k ) ] } ) ,
γ S { X q ( k ) } = δ S S { X q ( k ) } ,
WTH { V ( k ) } = { V ( k ) } - γ S { V ( k ) } ,
φ S { X ( k ) } = S δ S { X ( k ) } ,
BTH { V ( k ) } = φ B { V ( k ) } - { V ( k ) } ,
D { V ( k ) } = A + G [ WTH { V ( k ) } - BTH { V ( k ) } ] ,
C = I max / I min ,
MAE = 1 N k med d { S [ V ( k ) ] } - med op { S [ V ( k ) ] } ,

Metrics