Abstract

A temperature-compensated fiber specklegram strain sensor with an adaptive joint transform correlator (JTC) is presented. By exploiting the dual-channel correlation of the fiber specklegram JTC, we can measure the temperature-compensated strain. Experimental results have shown that the strain sensitivity can be as high as 0.1 μstrain/1 °C.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical fiber sensor technology,” IEEE J. Quantum Electron. QE-18, 626–665 (1982).
    [CrossRef]
  2. S. Wu, S. Yin, F. T. S. Yu, “Sensing with fiber specklegrams,” Appl. Opt. 30, 4468–4470 (1991).
    [CrossRef] [PubMed]
  3. K. Pan, C. Uang, F. Cheng, F. T. S. Yu, “Multimode fiber sensing by using mean-absolute speckle-intensity variation,” Appl. Opt. 33, 2095–2098 (1994).
    [CrossRef] [PubMed]
  4. D. A. Nolan, P. E. Blaszyk, E. Udd, “Optical fibers,” in Fiber Optic Sensors: An Introduction for Engineers and Scientists, E. Udd, ed. (Wiley, New York, 1991), p. 31.
  5. W. B. Spillman, “Multimode fiber-optic hydrophone based on a schlieren technique,” Appl. Opt. 20, 465–470 (1981).
    [CrossRef] [PubMed]
  6. W. B. Spillman, D. R. Patriquin, D. H. Crowne, “Fiber optic linear displacement sensor based upon a variable period diffraction grating,” Appl. Opt. 28, 3550–3552 (1989).
    [CrossRef] [PubMed]
  7. F. T. S. Yu, M. Wen, S. Yin, C. M. Uang, “Submicrometer displacement sensing using inner-product multimode fiber speckle fields,” Appl. Opt. 32, 4685–4698 (1993).
    [CrossRef] [PubMed]
  8. F. T. S. Yu, S. Yin, J. Zhang, R. Guo, “Application of fiber speckle hologram to fiber sensing,” Appl. Opt. 33, 5202–5203 (1994).
    [CrossRef] [PubMed]
  9. F. T. S. Yu, K. Pan, C. Uang, P. B. Ruffin, “Fiber specklegram sensing using an adaptive joint transform correlator,” Opt. Eng. 32, 2884–2889 (1993).
    [CrossRef]
  10. A. Dandridge, “Fiber optic sensors based on the Mach–Zehnder and Michelson interferometers,” in Fiber Optic Sensors, An Introduction for Engineers and Scientists, E. Udd, ed. (Wiley, New York, 1991), pp. 310–311.
  11. L. Cheng, “Core-ring-ratio method for surface roughness measurement,” J. Wave-Mater. Interact. 3, 289–300 (1988).
  12. F. T. S. Yu, K. Pan, D. Zhao, P. B. Ruffin, “Dynamic fiber specklegram sensing,” Appl. Opt. 34, 622–626 (1995).
    [CrossRef] [PubMed]

1995

1994

1993

F. T. S. Yu, K. Pan, C. Uang, P. B. Ruffin, “Fiber specklegram sensing using an adaptive joint transform correlator,” Opt. Eng. 32, 2884–2889 (1993).
[CrossRef]

F. T. S. Yu, M. Wen, S. Yin, C. M. Uang, “Submicrometer displacement sensing using inner-product multimode fiber speckle fields,” Appl. Opt. 32, 4685–4698 (1993).
[CrossRef] [PubMed]

1991

1989

1988

L. Cheng, “Core-ring-ratio method for surface roughness measurement,” J. Wave-Mater. Interact. 3, 289–300 (1988).

1982

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical fiber sensor technology,” IEEE J. Quantum Electron. QE-18, 626–665 (1982).
[CrossRef]

1981

Blaszyk, P. E.

D. A. Nolan, P. E. Blaszyk, E. Udd, “Optical fibers,” in Fiber Optic Sensors: An Introduction for Engineers and Scientists, E. Udd, ed. (Wiley, New York, 1991), p. 31.

Bucaro, J. A.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical fiber sensor technology,” IEEE J. Quantum Electron. QE-18, 626–665 (1982).
[CrossRef]

Cheng, F.

Cheng, L.

L. Cheng, “Core-ring-ratio method for surface roughness measurement,” J. Wave-Mater. Interact. 3, 289–300 (1988).

Cole, J. H.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical fiber sensor technology,” IEEE J. Quantum Electron. QE-18, 626–665 (1982).
[CrossRef]

Crowne, D. H.

Dandridge, A.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical fiber sensor technology,” IEEE J. Quantum Electron. QE-18, 626–665 (1982).
[CrossRef]

A. Dandridge, “Fiber optic sensors based on the Mach–Zehnder and Michelson interferometers,” in Fiber Optic Sensors, An Introduction for Engineers and Scientists, E. Udd, ed. (Wiley, New York, 1991), pp. 310–311.

Giallorenzi, T. G.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical fiber sensor technology,” IEEE J. Quantum Electron. QE-18, 626–665 (1982).
[CrossRef]

Guo, R.

Nolan, D. A.

D. A. Nolan, P. E. Blaszyk, E. Udd, “Optical fibers,” in Fiber Optic Sensors: An Introduction for Engineers and Scientists, E. Udd, ed. (Wiley, New York, 1991), p. 31.

Pan, K.

Patriquin, D. R.

Priest, R. G.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical fiber sensor technology,” IEEE J. Quantum Electron. QE-18, 626–665 (1982).
[CrossRef]

Rashleigh, S. C.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical fiber sensor technology,” IEEE J. Quantum Electron. QE-18, 626–665 (1982).
[CrossRef]

Ruffin, P. B.

F. T. S. Yu, K. Pan, D. Zhao, P. B. Ruffin, “Dynamic fiber specklegram sensing,” Appl. Opt. 34, 622–626 (1995).
[CrossRef] [PubMed]

F. T. S. Yu, K. Pan, C. Uang, P. B. Ruffin, “Fiber specklegram sensing using an adaptive joint transform correlator,” Opt. Eng. 32, 2884–2889 (1993).
[CrossRef]

Sigel, G. H.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical fiber sensor technology,” IEEE J. Quantum Electron. QE-18, 626–665 (1982).
[CrossRef]

Spillman, W. B.

Uang, C.

K. Pan, C. Uang, F. Cheng, F. T. S. Yu, “Multimode fiber sensing by using mean-absolute speckle-intensity variation,” Appl. Opt. 33, 2095–2098 (1994).
[CrossRef] [PubMed]

F. T. S. Yu, K. Pan, C. Uang, P. B. Ruffin, “Fiber specklegram sensing using an adaptive joint transform correlator,” Opt. Eng. 32, 2884–2889 (1993).
[CrossRef]

Uang, C. M.

Udd, E.

D. A. Nolan, P. E. Blaszyk, E. Udd, “Optical fibers,” in Fiber Optic Sensors: An Introduction for Engineers and Scientists, E. Udd, ed. (Wiley, New York, 1991), p. 31.

Wen, M.

Wu, S.

Yin, S.

Yu, F. T. S.

Zhang, J.

Zhao, D.

Appl. Opt.

IEEE J. Quantum Electron.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical fiber sensor technology,” IEEE J. Quantum Electron. QE-18, 626–665 (1982).
[CrossRef]

J. Wave-Mater. Interact.

L. Cheng, “Core-ring-ratio method for surface roughness measurement,” J. Wave-Mater. Interact. 3, 289–300 (1988).

Opt. Eng.

F. T. S. Yu, K. Pan, C. Uang, P. B. Ruffin, “Fiber specklegram sensing using an adaptive joint transform correlator,” Opt. Eng. 32, 2884–2889 (1993).
[CrossRef]

Other

A. Dandridge, “Fiber optic sensors based on the Mach–Zehnder and Michelson interferometers,” in Fiber Optic Sensors, An Introduction for Engineers and Scientists, E. Udd, ed. (Wiley, New York, 1991), pp. 310–311.

D. A. Nolan, P. E. Blaszyk, E. Udd, “Optical fibers,” in Fiber Optic Sensors: An Introduction for Engineers and Scientists, E. Udd, ed. (Wiley, New York, 1991), p. 31.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Electronically addressable JTC for strain and temperature sensing: L, lenses; CCD1, CCD2, CCD3, charge-coupled devices; PZT, piezoelectric transducer.

Fig. 2
Fig. 2

Multichannel JTC for specklegram sensing: (a) input patterns; (b) output correlation distributions.

Fig. 3
Fig. 3

Correlation peak intensity with strain and temperature perturbations.

Fig. 4
Fig. 4

Normalized correlation peak intensity as a function of temperature.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y ) = | m = 1 M u m ( x , y ) | 2 = n = 1 M m = 1 M [ a 0 m ( x , y ) + Δ a m ( x , y ) ] × [ a 0 n ( x , y ) + Δ a n ( x , y ) ] exp { j [ ϕ 0 m ( x , y ) ϕ 0 n ( x , y ) + Δ ϕ m Δ ϕ n ] } ,
δ m n = Δ ϕ m Δ ϕ n
δ m n = k ξ η Δ L ( 1 cos θ m 1 cos θ n ) ,
δ m n = k L ( 1 cos θ m 1 cos θ n ) ( η L d L d T + d η d T ) Δ T ,
d L L d T = 5 × 10 7 K 1 ,
d η d T = 10 5 K 1 .

Metrics