Abstract

An external reflection scanning near-field optical microscope with shear force regulation of the tip–surface distance is described. Near-field optical and shear force topographical images are compared for various samples. It is shown that the most important correlative relationships between these images can be deduced from symmetry considerations. The possibility of extracting additional information from the optical images is demonstrated on images of human blood cells.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Pohl, D. Courjon, eds. Proceedings of the NATO Advanced Research Workshop on Near Field Optics (Kluwer, Dordrecht, The Netherlands, 1993).
  2. U. Ch. Fischer, U. T. Dürig, D. W. Pohl, “Near-field optical scanning microscopy in reflection,” Appl. Phys. Lett. 52, 249–251 (1988).
    [Crossref]
  3. D. Courjon, J. -M. Vigoureux, M. Spajer, K. Sarayeddine, S. Leblanc, “External and internal reflection near field microscopy: experiments and results,” Appl. Opt. 29, 3734–3740 (1990).
    [Crossref] [PubMed]
  4. M. Spajer, A. Jalocha, “The reflection near field optical microscope: an alternative to STOM,” in Proceedings of the NATO Advanced Research Workshop on Near Field Optics, D. W. Pohl, D. Courjon, eds. (Kluwer, Dordrecht, The Netherlands, 1993), pp. 87–96.
  5. N. F. Van Hulst, M. H. P. Moers, B. Bölger, “Near-field optical microscopy in transmission and reflection modes in combination with force microscopy,” J. Microsc. 171, 95–105 (1993).
    [Crossref]
  6. S. I. Bozhevolnyi, M. Xiao, O. Keller, “External-reflection near-field optical microscope with cross-polarized detection,” Appl. Opt. 33, 876–880 (1994).
    [Crossref] [PubMed]
  7. S. Bozhevolnyi, S. Berntsen, E. Bozhevolnaya, “Extension of the macroscopic model for reflection near-field microscopy: regularization and image formation,” J. Opt. Soc. Am. A 11, 609–617 (1994).
    [Crossref]
  8. E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
    [Crossref]
  9. R. Toledo-Crow, P. C. Yang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
    [Crossref]
  10. A. Shchemelin, M. Rudman, K. Lieberman, A. Lewis, “A simple lateral force sensing technique for near-field micropattern generation,” Rev. Sci. Instrum. 64, 3538–3541 (1993).
    [Crossref]
  11. S. I. Bozhevolnyi, O. Keller, M. Xiao, “Control of the tip-surface distance in near-field optical microscopy,” Appl. Opt. 32, 4864–4868 (1993).
    [Crossref] [PubMed]

1994 (2)

1993 (3)

A. Shchemelin, M. Rudman, K. Lieberman, A. Lewis, “A simple lateral force sensing technique for near-field micropattern generation,” Rev. Sci. Instrum. 64, 3538–3541 (1993).
[Crossref]

S. I. Bozhevolnyi, O. Keller, M. Xiao, “Control of the tip-surface distance in near-field optical microscopy,” Appl. Opt. 32, 4864–4868 (1993).
[Crossref] [PubMed]

N. F. Van Hulst, M. H. P. Moers, B. Bölger, “Near-field optical microscopy in transmission and reflection modes in combination with force microscopy,” J. Microsc. 171, 95–105 (1993).
[Crossref]

1992 (2)

E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[Crossref]

R. Toledo-Crow, P. C. Yang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
[Crossref]

1990 (1)

1988 (1)

U. Ch. Fischer, U. T. Dürig, D. W. Pohl, “Near-field optical scanning microscopy in reflection,” Appl. Phys. Lett. 52, 249–251 (1988).
[Crossref]

Berntsen, S.

Betzig, E.

E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[Crossref]

Bölger, B.

N. F. Van Hulst, M. H. P. Moers, B. Bölger, “Near-field optical microscopy in transmission and reflection modes in combination with force microscopy,” J. Microsc. 171, 95–105 (1993).
[Crossref]

Bozhevolnaya, E.

Bozhevolnyi, S.

Bozhevolnyi, S. I.

Chen, Y.

R. Toledo-Crow, P. C. Yang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
[Crossref]

Courjon, D.

Dürig, U. T.

U. Ch. Fischer, U. T. Dürig, D. W. Pohl, “Near-field optical scanning microscopy in reflection,” Appl. Phys. Lett. 52, 249–251 (1988).
[Crossref]

Finn, P. L.

E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[Crossref]

Fischer, U. Ch.

U. Ch. Fischer, U. T. Dürig, D. W. Pohl, “Near-field optical scanning microscopy in reflection,” Appl. Phys. Lett. 52, 249–251 (1988).
[Crossref]

Jalocha, A.

M. Spajer, A. Jalocha, “The reflection near field optical microscope: an alternative to STOM,” in Proceedings of the NATO Advanced Research Workshop on Near Field Optics, D. W. Pohl, D. Courjon, eds. (Kluwer, Dordrecht, The Netherlands, 1993), pp. 87–96.

Keller, O.

Leblanc, S.

Lewis, A.

A. Shchemelin, M. Rudman, K. Lieberman, A. Lewis, “A simple lateral force sensing technique for near-field micropattern generation,” Rev. Sci. Instrum. 64, 3538–3541 (1993).
[Crossref]

Lieberman, K.

A. Shchemelin, M. Rudman, K. Lieberman, A. Lewis, “A simple lateral force sensing technique for near-field micropattern generation,” Rev. Sci. Instrum. 64, 3538–3541 (1993).
[Crossref]

Moers, M. H. P.

N. F. Van Hulst, M. H. P. Moers, B. Bölger, “Near-field optical microscopy in transmission and reflection modes in combination with force microscopy,” J. Microsc. 171, 95–105 (1993).
[Crossref]

Pohl, D. W.

U. Ch. Fischer, U. T. Dürig, D. W. Pohl, “Near-field optical scanning microscopy in reflection,” Appl. Phys. Lett. 52, 249–251 (1988).
[Crossref]

Rudman, M.

A. Shchemelin, M. Rudman, K. Lieberman, A. Lewis, “A simple lateral force sensing technique for near-field micropattern generation,” Rev. Sci. Instrum. 64, 3538–3541 (1993).
[Crossref]

Sarayeddine, K.

Shchemelin, A.

A. Shchemelin, M. Rudman, K. Lieberman, A. Lewis, “A simple lateral force sensing technique for near-field micropattern generation,” Rev. Sci. Instrum. 64, 3538–3541 (1993).
[Crossref]

Spajer, M.

D. Courjon, J. -M. Vigoureux, M. Spajer, K. Sarayeddine, S. Leblanc, “External and internal reflection near field microscopy: experiments and results,” Appl. Opt. 29, 3734–3740 (1990).
[Crossref] [PubMed]

M. Spajer, A. Jalocha, “The reflection near field optical microscope: an alternative to STOM,” in Proceedings of the NATO Advanced Research Workshop on Near Field Optics, D. W. Pohl, D. Courjon, eds. (Kluwer, Dordrecht, The Netherlands, 1993), pp. 87–96.

Toledo-Crow, R.

R. Toledo-Crow, P. C. Yang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
[Crossref]

Vaez-Iravani, M.

R. Toledo-Crow, P. C. Yang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
[Crossref]

Van Hulst, N. F.

N. F. Van Hulst, M. H. P. Moers, B. Bölger, “Near-field optical microscopy in transmission and reflection modes in combination with force microscopy,” J. Microsc. 171, 95–105 (1993).
[Crossref]

Vigoureux, J. -M.

Weiner, J. S.

E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[Crossref]

Xiao, M.

Yang, P. C.

R. Toledo-Crow, P. C. Yang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (3)

E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[Crossref]

R. Toledo-Crow, P. C. Yang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
[Crossref]

U. Ch. Fischer, U. T. Dürig, D. W. Pohl, “Near-field optical scanning microscopy in reflection,” Appl. Phys. Lett. 52, 249–251 (1988).
[Crossref]

J. Microsc. (1)

N. F. Van Hulst, M. H. P. Moers, B. Bölger, “Near-field optical microscopy in transmission and reflection modes in combination with force microscopy,” J. Microsc. 171, 95–105 (1993).
[Crossref]

J. Opt. Soc. Am. A (1)

Rev. Sci. Instrum. (1)

A. Shchemelin, M. Rudman, K. Lieberman, A. Lewis, “A simple lateral force sensing technique for near-field micropattern generation,” Rev. Sci. Instrum. 64, 3538–3541 (1993).
[Crossref]

Other (2)

D. W. Pohl, D. Courjon, eds. Proceedings of the NATO Advanced Research Workshop on Near Field Optics (Kluwer, Dordrecht, The Netherlands, 1993).

M. Spajer, A. Jalocha, “The reflection near field optical microscope: an alternative to STOM,” in Proceedings of the NATO Advanced Research Workshop on Near Field Optics, D. W. Pohl, D. Courjon, eds. (Kluwer, Dordrecht, The Netherlands, 1993), pp. 87–96.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Experimental setup for the combined scanning shear force and external reflection near-field microscope: LS, laser source; BS, beam splitter; O, objective; OF, optical fiber; PT, piezoelectric translator; S, sample; PMT, photomultiplier tube; CU, controller unit; LIA, lock-in amplifier; PD, photodiode; G, generator.

Fig. 2
Fig. 2

Amplitude of tip vibrations measured as a function of the tip–surface distance.

Fig. 3
Fig. 3

Gray-scale images (1 × 2 μm2) of the diffraction grating with a 0.75-μm period and a groove depth of ∼60 nm: a, topographical; b, optical.

Fig. 4
Fig. 4

Gray-scale images (2 × 3 μm2) of the silver-coated diffraction grating with a 1.6-μm period and rectangular groove depth of ∼100 nm: a, topographical; b, optical.

Fig. 5
Fig. 5

Line-plot images (2×2 μm2) of the diffraction grating with a 0.55-μm period and a groove depth of ∼100 nm: a, topographical; b, optical. The scale in the depth of the topographical image is shown by the inserted bar of 100-nm length.

Fig. 6
Fig. 6

Gray-scale images (4 × 4 μm2) of the uncoated CD with pits of ∼100-nm depth: a, topographical; b, optical.

Fig. 7
Fig. 7

Gray-scale images (3 × 4 μm2) of a cluster of blood cells: a, topographical; b, optical. The maximum depth of the topographical image is ∼400 nm.

Fig. 8
Fig. 8

Line-plot images of a 3 × 1 μm2 area of the inner part of a leukocyte: a, topographical; b, optical. The depth scale is shown by the inserted bar of 100-nm length.

Fig. 9
Fig. 9

Gray-scale images (4 × 4 μm2) of the inner part of a leukocyte: a, topographical; b, optical. The maximum depth of the topographical image is ∼100 nm.

Fig. 10
Fig. 10

Gray-scale images (4 × 4 μm2) of the uncoated CD with pits of ∼100-nm depth obtained with the asymmetric fiber tip: a, topographical; b, optical.

Fig. 11
Fig. 11

Gray-scale images (4 × 4 μm2) of a part of a leukocyte: a, topographical; b, optical. The maximum depth of the topographical image is ∼400 nm. The images were obtained with a fiber tip that emitted a substantial part of the light parallel to the sample surface.

Metrics