Abstract

The total internal reflection of light occurring at the interface between glass and a low-index liquid containing suspended microparticles can be electrically controlled. The particles are charged and the glass is coated with a thin, transparent conductor. When the conductor is biased to attract the particles, they scatter and absorb light from the evanescent optical field near the interface, thus reducing the reflectivity. When the conductor is biased to repel the particles, total internal reflection is achieved. Experimental results are given for the time, voltage, and angle-of-incidence dependence of the reflectivity at the interface between an In–Sn–oxide-coated glass surface and a suspension of 0.47-μm-diameter silica particles in acetonitrile. The switching is found to be fast (∼100 ms) and reproducible. In certain conditions the on/off ratio for a single reflection can be as large as 2:1. A simple theoretical model is developed to interpret these experiments. The model gives a reasonable fit to the data and allows one to extract information such as the particle mobility and the particle density in the evanescent-wave region.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. C. Prieve, N. A. Frej, “Total internal reflection microscopy: a quantitative tool for the measurement of colloidal forces,” Langmuir 6, 396–403 (1990).
    [CrossRef]
  2. G. A. Schumacher, T. G. M. van de Ven, “Evanescent wave scattering studies on latex–glass interactions,” Langmuir 7, 2028–2033 (1991).
    [CrossRef]
  3. B. Pouligny, D. J. W. Aastuen, N.A. Clark, “Total-internal-reflection study of a colloidal-crystal–container-wall interface,” Phys. Rev. A 44, 6616–6625 (1991).
    [CrossRef] [PubMed]
  4. M. A. Brown, A. L. Smith, E. J. Staples, “A method using total internal reflection microscopy and radiation pressure to study weak interaction forces of particles near surfaces,” Langmuir 5, 1319–1324 (1989).
    [CrossRef]
  5. W. J. Albery, R. A. Fredlein, G. J. O'Shea, A. L. Smith, “Colloidal deposition under conditions of controlled potential,” Faraday Discuss. Chem. Soc. 90, 223–234 (1990).
    [CrossRef]
  6. S. G. Flicker, J. L. Tipa, S. G. Bike, “Quantifying double-layer repulsion between a colloidal sphere and a glass plate using total internal reflection microscopy,” J. Colloid Interface Sci. 158, 317–325 (1993).
    [CrossRef]
  7. N. J. Harrick, Internal Reflection Spectroscopy (Wiley, New York, 1967), pp. 27–30;J. Gao, S. Rice, “Light scattering with incident evanescent waves: a method for studying the properties of adsorbed polymers,” J. Chem Phys. 90, 3469–3478 (1989).
    [CrossRef]
  8. A. L. Dalisa, “Electrophoretic display technology,” IEEE Trans. Electron. Devices ED-24, 827–834 (1977).
    [CrossRef]
  9. See, e.g., T. Bellini, R. Piazza, C. Sozzi, V. DeGiorgio, “Electric birefringence of a dispersion of electrically charged anisotropic particles,” Europhys. Lett. 7, 561–565 (1988).
    [CrossRef]
  10. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981), p. 91.
  11. See, e.g., B. Chu, Laser Light Scattering (Academic, San Diego, Calif., 1991), p. 63ff.
  12. Ref. 11, pp. 247–249.
  13. E. E. Uzgiris, “Laser Doppler spectrometer for study of electrokinetic phenomena,” Rev. Sci. Instrum. 45, 74–80 (1974).
    [CrossRef] [PubMed]
  14. R. J. Hunter, Foundations of Colloid Science (Oxford, London, 1986), Vol. 1, p. 559.
  15. Ref. 14, p. 390.
  16. V. Novotny, “Particle charges and particle-substrate forces by optical transients,” J. Appl. Phys. 50, 324–332 (1979).
    [CrossRef]
  17. D. C. Prieve, J. Y. Walz, “Scattering of an evanescent surface wave by a microscopic dielectric sphere,” Appl. Opt. 32, 1629–1641 (1993).
    [CrossRef] [PubMed]
  18. W. H. Weber, J. T. Remillard, J. M. Ginder, “Electrophoretic switch for a light pipe,” U.S. patent5,317,667 (31May1994).
  19. R. M. Glen, “Polymeric optical fiber,” Chemtronics 1, 98–106 (1986).
  20. J. Dugas, M. Sotom, L. Martin, J.-M. Cariou, “Accurate characterization of the transmittivity of large-diameter multimode optical fibers,” Appl. Opt. 26, 4198–4208 (1987).
    [CrossRef] [PubMed]
  21. C. Emslie, “Polymer optical fibers,” J. Mater. Sci. 23, 2281–2293 (1988).
    [CrossRef]
  22. J. T. Remillard, M. P. Everson, W. H. Weber, “Loss mechanisms in optical light pipe,” Appl. Opt. 31, 7232–7241 (1992).
    [CrossRef] [PubMed]
  23. J. Dugas, G. Maurel, “Mode-coupling processes in polymethyl methacrylate-core optical fibers,” Appl. Opt. 31, 5069–5079 (1992).
    [CrossRef] [PubMed]

1993 (2)

S. G. Flicker, J. L. Tipa, S. G. Bike, “Quantifying double-layer repulsion between a colloidal sphere and a glass plate using total internal reflection microscopy,” J. Colloid Interface Sci. 158, 317–325 (1993).
[CrossRef]

D. C. Prieve, J. Y. Walz, “Scattering of an evanescent surface wave by a microscopic dielectric sphere,” Appl. Opt. 32, 1629–1641 (1993).
[CrossRef] [PubMed]

1992 (2)

1991 (2)

G. A. Schumacher, T. G. M. van de Ven, “Evanescent wave scattering studies on latex–glass interactions,” Langmuir 7, 2028–2033 (1991).
[CrossRef]

B. Pouligny, D. J. W. Aastuen, N.A. Clark, “Total-internal-reflection study of a colloidal-crystal–container-wall interface,” Phys. Rev. A 44, 6616–6625 (1991).
[CrossRef] [PubMed]

1990 (2)

D. C. Prieve, N. A. Frej, “Total internal reflection microscopy: a quantitative tool for the measurement of colloidal forces,” Langmuir 6, 396–403 (1990).
[CrossRef]

W. J. Albery, R. A. Fredlein, G. J. O'Shea, A. L. Smith, “Colloidal deposition under conditions of controlled potential,” Faraday Discuss. Chem. Soc. 90, 223–234 (1990).
[CrossRef]

1989 (1)

M. A. Brown, A. L. Smith, E. J. Staples, “A method using total internal reflection microscopy and radiation pressure to study weak interaction forces of particles near surfaces,” Langmuir 5, 1319–1324 (1989).
[CrossRef]

1988 (2)

See, e.g., T. Bellini, R. Piazza, C. Sozzi, V. DeGiorgio, “Electric birefringence of a dispersion of electrically charged anisotropic particles,” Europhys. Lett. 7, 561–565 (1988).
[CrossRef]

C. Emslie, “Polymer optical fibers,” J. Mater. Sci. 23, 2281–2293 (1988).
[CrossRef]

1987 (1)

1986 (1)

R. M. Glen, “Polymeric optical fiber,” Chemtronics 1, 98–106 (1986).

1979 (1)

V. Novotny, “Particle charges and particle-substrate forces by optical transients,” J. Appl. Phys. 50, 324–332 (1979).
[CrossRef]

1977 (1)

A. L. Dalisa, “Electrophoretic display technology,” IEEE Trans. Electron. Devices ED-24, 827–834 (1977).
[CrossRef]

1974 (1)

E. E. Uzgiris, “Laser Doppler spectrometer for study of electrokinetic phenomena,” Rev. Sci. Instrum. 45, 74–80 (1974).
[CrossRef] [PubMed]

Aastuen, D. J. W.

B. Pouligny, D. J. W. Aastuen, N.A. Clark, “Total-internal-reflection study of a colloidal-crystal–container-wall interface,” Phys. Rev. A 44, 6616–6625 (1991).
[CrossRef] [PubMed]

Albery, W. J.

W. J. Albery, R. A. Fredlein, G. J. O'Shea, A. L. Smith, “Colloidal deposition under conditions of controlled potential,” Faraday Discuss. Chem. Soc. 90, 223–234 (1990).
[CrossRef]

Bellini, T.

See, e.g., T. Bellini, R. Piazza, C. Sozzi, V. DeGiorgio, “Electric birefringence of a dispersion of electrically charged anisotropic particles,” Europhys. Lett. 7, 561–565 (1988).
[CrossRef]

Bike, S. G.

S. G. Flicker, J. L. Tipa, S. G. Bike, “Quantifying double-layer repulsion between a colloidal sphere and a glass plate using total internal reflection microscopy,” J. Colloid Interface Sci. 158, 317–325 (1993).
[CrossRef]

Brown, M. A.

M. A. Brown, A. L. Smith, E. J. Staples, “A method using total internal reflection microscopy and radiation pressure to study weak interaction forces of particles near surfaces,” Langmuir 5, 1319–1324 (1989).
[CrossRef]

Cariou, J.-M.

Chu, B.

See, e.g., B. Chu, Laser Light Scattering (Academic, San Diego, Calif., 1991), p. 63ff.

Clark, N.A.

B. Pouligny, D. J. W. Aastuen, N.A. Clark, “Total-internal-reflection study of a colloidal-crystal–container-wall interface,” Phys. Rev. A 44, 6616–6625 (1991).
[CrossRef] [PubMed]

Dalisa, A. L.

A. L. Dalisa, “Electrophoretic display technology,” IEEE Trans. Electron. Devices ED-24, 827–834 (1977).
[CrossRef]

DeGiorgio, V.

See, e.g., T. Bellini, R. Piazza, C. Sozzi, V. DeGiorgio, “Electric birefringence of a dispersion of electrically charged anisotropic particles,” Europhys. Lett. 7, 561–565 (1988).
[CrossRef]

Dugas, J.

Emslie, C.

C. Emslie, “Polymer optical fibers,” J. Mater. Sci. 23, 2281–2293 (1988).
[CrossRef]

Everson, M. P.

Flicker, S. G.

S. G. Flicker, J. L. Tipa, S. G. Bike, “Quantifying double-layer repulsion between a colloidal sphere and a glass plate using total internal reflection microscopy,” J. Colloid Interface Sci. 158, 317–325 (1993).
[CrossRef]

Fredlein, R. A.

W. J. Albery, R. A. Fredlein, G. J. O'Shea, A. L. Smith, “Colloidal deposition under conditions of controlled potential,” Faraday Discuss. Chem. Soc. 90, 223–234 (1990).
[CrossRef]

Frej, N. A.

D. C. Prieve, N. A. Frej, “Total internal reflection microscopy: a quantitative tool for the measurement of colloidal forces,” Langmuir 6, 396–403 (1990).
[CrossRef]

Ginder, J. M.

W. H. Weber, J. T. Remillard, J. M. Ginder, “Electrophoretic switch for a light pipe,” U.S. patent5,317,667 (31May1994).

Glen, R. M.

R. M. Glen, “Polymeric optical fiber,” Chemtronics 1, 98–106 (1986).

Harrick, N. J.

N. J. Harrick, Internal Reflection Spectroscopy (Wiley, New York, 1967), pp. 27–30;J. Gao, S. Rice, “Light scattering with incident evanescent waves: a method for studying the properties of adsorbed polymers,” J. Chem Phys. 90, 3469–3478 (1989).
[CrossRef]

Hunter, R. J.

R. J. Hunter, Foundations of Colloid Science (Oxford, London, 1986), Vol. 1, p. 559.

Martin, L.

Maurel, G.

Novotny, V.

V. Novotny, “Particle charges and particle-substrate forces by optical transients,” J. Appl. Phys. 50, 324–332 (1979).
[CrossRef]

O'Shea, G. J.

W. J. Albery, R. A. Fredlein, G. J. O'Shea, A. L. Smith, “Colloidal deposition under conditions of controlled potential,” Faraday Discuss. Chem. Soc. 90, 223–234 (1990).
[CrossRef]

Piazza, R.

See, e.g., T. Bellini, R. Piazza, C. Sozzi, V. DeGiorgio, “Electric birefringence of a dispersion of electrically charged anisotropic particles,” Europhys. Lett. 7, 561–565 (1988).
[CrossRef]

Pouligny, B.

B. Pouligny, D. J. W. Aastuen, N.A. Clark, “Total-internal-reflection study of a colloidal-crystal–container-wall interface,” Phys. Rev. A 44, 6616–6625 (1991).
[CrossRef] [PubMed]

Prieve, D. C.

D. C. Prieve, J. Y. Walz, “Scattering of an evanescent surface wave by a microscopic dielectric sphere,” Appl. Opt. 32, 1629–1641 (1993).
[CrossRef] [PubMed]

D. C. Prieve, N. A. Frej, “Total internal reflection microscopy: a quantitative tool for the measurement of colloidal forces,” Langmuir 6, 396–403 (1990).
[CrossRef]

Remillard, J. T.

J. T. Remillard, M. P. Everson, W. H. Weber, “Loss mechanisms in optical light pipe,” Appl. Opt. 31, 7232–7241 (1992).
[CrossRef] [PubMed]

W. H. Weber, J. T. Remillard, J. M. Ginder, “Electrophoretic switch for a light pipe,” U.S. patent5,317,667 (31May1994).

Schumacher, G. A.

G. A. Schumacher, T. G. M. van de Ven, “Evanescent wave scattering studies on latex–glass interactions,” Langmuir 7, 2028–2033 (1991).
[CrossRef]

Smith, A. L.

W. J. Albery, R. A. Fredlein, G. J. O'Shea, A. L. Smith, “Colloidal deposition under conditions of controlled potential,” Faraday Discuss. Chem. Soc. 90, 223–234 (1990).
[CrossRef]

M. A. Brown, A. L. Smith, E. J. Staples, “A method using total internal reflection microscopy and radiation pressure to study weak interaction forces of particles near surfaces,” Langmuir 5, 1319–1324 (1989).
[CrossRef]

Sotom, M.

Sozzi, C.

See, e.g., T. Bellini, R. Piazza, C. Sozzi, V. DeGiorgio, “Electric birefringence of a dispersion of electrically charged anisotropic particles,” Europhys. Lett. 7, 561–565 (1988).
[CrossRef]

Staples, E. J.

M. A. Brown, A. L. Smith, E. J. Staples, “A method using total internal reflection microscopy and radiation pressure to study weak interaction forces of particles near surfaces,” Langmuir 5, 1319–1324 (1989).
[CrossRef]

Tipa, J. L.

S. G. Flicker, J. L. Tipa, S. G. Bike, “Quantifying double-layer repulsion between a colloidal sphere and a glass plate using total internal reflection microscopy,” J. Colloid Interface Sci. 158, 317–325 (1993).
[CrossRef]

Uzgiris, E. E.

E. E. Uzgiris, “Laser Doppler spectrometer for study of electrokinetic phenomena,” Rev. Sci. Instrum. 45, 74–80 (1974).
[CrossRef] [PubMed]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981), p. 91.

van de Ven, T. G. M.

G. A. Schumacher, T. G. M. van de Ven, “Evanescent wave scattering studies on latex–glass interactions,” Langmuir 7, 2028–2033 (1991).
[CrossRef]

Walz, J. Y.

Weber, W. H.

J. T. Remillard, M. P. Everson, W. H. Weber, “Loss mechanisms in optical light pipe,” Appl. Opt. 31, 7232–7241 (1992).
[CrossRef] [PubMed]

W. H. Weber, J. T. Remillard, J. M. Ginder, “Electrophoretic switch for a light pipe,” U.S. patent5,317,667 (31May1994).

Appl. Opt. (4)

Chemtronics (1)

R. M. Glen, “Polymeric optical fiber,” Chemtronics 1, 98–106 (1986).

Europhys. Lett. (1)

See, e.g., T. Bellini, R. Piazza, C. Sozzi, V. DeGiorgio, “Electric birefringence of a dispersion of electrically charged anisotropic particles,” Europhys. Lett. 7, 561–565 (1988).
[CrossRef]

Faraday Discuss. Chem. Soc. (1)

W. J. Albery, R. A. Fredlein, G. J. O'Shea, A. L. Smith, “Colloidal deposition under conditions of controlled potential,” Faraday Discuss. Chem. Soc. 90, 223–234 (1990).
[CrossRef]

IEEE Trans. Electron. Devices (1)

A. L. Dalisa, “Electrophoretic display technology,” IEEE Trans. Electron. Devices ED-24, 827–834 (1977).
[CrossRef]

J. Appl. Phys. (1)

V. Novotny, “Particle charges and particle-substrate forces by optical transients,” J. Appl. Phys. 50, 324–332 (1979).
[CrossRef]

J. Colloid Interface Sci. (1)

S. G. Flicker, J. L. Tipa, S. G. Bike, “Quantifying double-layer repulsion between a colloidal sphere and a glass plate using total internal reflection microscopy,” J. Colloid Interface Sci. 158, 317–325 (1993).
[CrossRef]

J. Mater. Sci. (1)

C. Emslie, “Polymer optical fibers,” J. Mater. Sci. 23, 2281–2293 (1988).
[CrossRef]

Langmuir (3)

D. C. Prieve, N. A. Frej, “Total internal reflection microscopy: a quantitative tool for the measurement of colloidal forces,” Langmuir 6, 396–403 (1990).
[CrossRef]

G. A. Schumacher, T. G. M. van de Ven, “Evanescent wave scattering studies on latex–glass interactions,” Langmuir 7, 2028–2033 (1991).
[CrossRef]

M. A. Brown, A. L. Smith, E. J. Staples, “A method using total internal reflection microscopy and radiation pressure to study weak interaction forces of particles near surfaces,” Langmuir 5, 1319–1324 (1989).
[CrossRef]

Phys. Rev. A (1)

B. Pouligny, D. J. W. Aastuen, N.A. Clark, “Total-internal-reflection study of a colloidal-crystal–container-wall interface,” Phys. Rev. A 44, 6616–6625 (1991).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

E. E. Uzgiris, “Laser Doppler spectrometer for study of electrokinetic phenomena,” Rev. Sci. Instrum. 45, 74–80 (1974).
[CrossRef] [PubMed]

Other (7)

R. J. Hunter, Foundations of Colloid Science (Oxford, London, 1986), Vol. 1, p. 559.

Ref. 14, p. 390.

W. H. Weber, J. T. Remillard, J. M. Ginder, “Electrophoretic switch for a light pipe,” U.S. patent5,317,667 (31May1994).

N. J. Harrick, Internal Reflection Spectroscopy (Wiley, New York, 1967), pp. 27–30;J. Gao, S. Rice, “Light scattering with incident evanescent waves: a method for studying the properties of adsorbed polymers,” J. Chem Phys. 90, 3469–3478 (1989).
[CrossRef]

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981), p. 91.

See, e.g., B. Chu, Laser Light Scattering (Academic, San Diego, Calif., 1991), p. 63ff.

Ref. 11, pp. 247–249.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Calculated (a) penetration depth and (b) Ie/I0 as a function of angle for light of wavelength λ0 = 632.8 nm with nprism = 1.64132 and nacetonitrile = 1.34.

Fig. 2
Fig. 2

Schematic view of the planar electrophoretic switch. Charged particles are suspended in a low-refractive-index fluid held between a metallic outer electrode (z = d) and an In–Sn–oxide-coated glass inner electrode (z = 0). Light is incident at an angle θ on the interface between the liquid and the inner electrode. For incident angles greater than the critical angle, an evanescent field extends from the inner electrode into the liquid. When a potential difference between the inner and outer electrodes is applied, particles can be drawn to or from the inner electrode and the associated evanescent field, thereby modulating the reflectivity of the liquid–electrode interface.

Fig. 3
Fig. 3

Switching characteristics of the planar electrophoretic switch at θ = 54.88° with a 3.0 wt. % suspension of 0.47-μm-diameter SiO2 particles in acetonitrile. The time dependence of the switch reflectivity (top) induced by a bipolar square-wave applied voltage (bottom) is shown.

Fig. 4
Fig. 4

Off-state transient response of the reflectivity of the planar electrophoretic device for applied voltages of a, 4.0 V; b, 6.0 V; c, 8.0 V; and d, 12 V. The inset shows the data on an expanded time scale. The dashed curves are fits to Eq. (18) as explained in the text.

Fig. 5
Fig. 5

Off-state response of the planar electrophoretic switch at a fixed voltage step of 10.0 V for incident angles of a, 55.03°; b, 55.19°; c, 55.34°; d, 55.49°; e, 55.64°; f, 55.79°; g, 55.94°; h, 56.09°; and i, 56.25°. The bottom panel displays the same data on an expanded time scale.

Fig. 6
Fig. 6

Steady-state reflectivity of the planar electrophoretic switch as a function of incident angle θ for several applied voltages.

Fig. 7
Fig. 7

Schematic view of a coaxial electrophoretic switch. The switch is designed to modulate the intensity of the light propagating in a light pipe without breaking the optical continuity of the pipe.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

I ( θ , z ) = I e ( θ ) exp ( z / l ) ,
l = λ 0 4 π ( n 1 2 sin 2 θ n 2 2 ) 1 / 2
I e ( θ ) = I 0 2 ( T s + T p ) sin θ ,
T s = 4 cos 2 θ 1 ( n 2 / n 1 ) 2 ,
T p = 4 n 1 2 cos 2 θ n 2 2 cos 2 θ + n 1 2 [ ( n 1 / n 2 ) 2 sin 2 θ 1 ] .
I r ( t ) = I 0 I e σ V N S ( t ) / cos θ ,
n ( υ ) exp ( υ υ m υ s ) 2 ,
n ( υ ) = 2 N π υ s [ 1 + erf ( υ m / υ s ) ] exp ( υ υ m υ s ) 2 ,
erf ( x ) = 2 π 0 x exp ( u 2 ) d u .
N S ( t ) = d / t n ( υ ) d υ .
I r ( t ) = I 0 I e σ V N / cos θ 1 + erf ( υ m / υ s ) [ 1 erf ( d υ s t υ m υ s ) ] .
n ( z ) exp [ q Φ ( z ) k B T ] ,
Φ ( z ) ɛ V ( z / d ) ,
n ( z ) = ɛ q N eff V kTd exp ( q ɛ V z kTd ) .
I r ( t ) = I 0 ( I e σ / cos θ ) 0 n ( z ) exp ( z / l ) d z ,
I r ( t ) = I 0 I e N eff σ / cos θ 1 + kTd / ɛ qVl .
σ V = σ 1 + kTd / ɛ qVl .
I r ( t , V ) = I 0 I e N eff σ / cos θ 1 + kTd / ɛ qVl [ 1 1 + erf ( υ m / υ s ) ] × [ 1 erf ( d υ s t υ m υ s ) ] .

Metrics