Abstract

We optimize the design of a short-range communication system using nondirected line-of-sight IR radiation. We propose a receiver structure comprising a spherical thin-film optical filter and a truncated spherical lens that can significantly outperform an optimized planar-filter system. We can make the passband of the spherical filter arbitrarily narrow without constraining the field of view by using an arbitrarily large filter radius. We argue that a truncation angle of 90° maximizes the receiver field of view when a spherical filter is used. We jointly optimize the transmitter radiation pattern and receiver optical components. Numerical results show that 269 mW of transmitted signal power is sufficient to achieve 100 Mbit/s throughout a 4-m-radius cell with high background irradiance.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. R. Gfeller, U. H. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE 67, 1474–1486 (1979).
    [Crossref]
  2. M. D. Kotzin, “Short-range communications using diffusely scattered infrared radiation,” Ph.D. dissertation (Northwestern University, Evanston, Ill., 1981).
  3. M. D. Kotzin, A. P. van den Heuvel, “a Duplex infra-red systems for in-building communications,” in Proceedings of the IEEE Vehicular Technology Conference '86 (Institute of Electrical and Electronics Engineers, New York, 1986), pp. 179–185.
  4. J. R. Barry, “Wireless communication using nondirected infrared radiation,” Ph.D. dissertation (University of California at Berkeley, Berkeley, Calif., 1992).
  5. D. R. Pauluzzi, P. R. McConnell, R. L. Poulin, “Free-space undirected infrared voice and data communications with a comparison to rf systems,” in Proceedings of the IEEE International Conference on Selected Topics in Wireless Communications (Institute of Electrical and Electronics Engineers, New York, 1992), pp. 279–285.
    [Crossref]
  6. M. E. Marhic, M. D. Kotzin, A. P. van den Heuvel, “Reflectors and immersion lenses for detectors of diffuse radiation,” J. Opt. Soc. Am. 72, 352–355 (1982).
    [Crossref]
  7. P. P. Smyth, M. McCullagh, D. Wisely, D. Wood, S. Ritchie, P. Eardley, S. Cassidy, “Optical wireless local area networks—enabling technologies,” Br. Telecom Technol. J. 11 (1993).
  8. J. M. Kahn, J. R. Barry, M. D. Audeh, J. B. Carruthers, W. J. Krause, G. W. Marsh, “Nondirected infrared links for high-capacity wireless LAN's,” IEEE Personal Comm. Mag. 1, 12–25 (1994).
    [Crossref]
  9. H. A. Ankermann, “Transmission of audio signals by infrared light carrier,” J. Soc. Motion Pict. Telev. Eng. 89, 834–837 (1980).
  10. S. Ramo, J. R. Whinnery, T. Van Duzer, Fields and Waves in Communication Electronics (Wiley, New York, 1984), Chap. 6, pp. 309–310.
  11. H. A. Macleod, Thin-Film Optical Filters (Hilger, London, 1969).
  12. J. D. Rancourt, Optical Thin Films (Macmillan, New York, 1987).
  13. Product Catalog (Melles Griot, Irvine, Calif., 1991), Chap. 11, pp. 25–30.
  14. Product Catalog (Optical Coating Laboratory, Inc., Santa Rosa, Calif., 1990).
  15. G. Smestad, H. Ries, R. Winston, E. Yablonovitch, “The thermodynamic limits of light concentrators,” Solar Energy Mat. 21, 99–111 (1990).
    [Crossref]
  16. J. P. Savicki, S. P. Morgan, “Hemispherical concentrators and spectral filters for planar sensors in diffuse radiation fields,” Appl. Opt. 33, 8057–8061 (1994).
    [Crossref] [PubMed]
  17. G. W. Marsh, J. M. Kahn, “50-Mb/s diffuse infrared free-space link using on–off keying with decision feedback equalization,” IEEE Photon. Technol. Lett. 6, 1268–1270 (1994).
    [Crossref]
  18. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985), p. 565.
  19. Safety of Laser Products—Part 1, Equipment Classification, Requirements, and User's Guide, 1st ed., International Standard IEC-821-1 (International Electrotechnical Commission, Geneva, 1993).

1994 (3)

J. M. Kahn, J. R. Barry, M. D. Audeh, J. B. Carruthers, W. J. Krause, G. W. Marsh, “Nondirected infrared links for high-capacity wireless LAN's,” IEEE Personal Comm. Mag. 1, 12–25 (1994).
[Crossref]

J. P. Savicki, S. P. Morgan, “Hemispherical concentrators and spectral filters for planar sensors in diffuse radiation fields,” Appl. Opt. 33, 8057–8061 (1994).
[Crossref] [PubMed]

G. W. Marsh, J. M. Kahn, “50-Mb/s diffuse infrared free-space link using on–off keying with decision feedback equalization,” IEEE Photon. Technol. Lett. 6, 1268–1270 (1994).
[Crossref]

1993 (1)

P. P. Smyth, M. McCullagh, D. Wisely, D. Wood, S. Ritchie, P. Eardley, S. Cassidy, “Optical wireless local area networks—enabling technologies,” Br. Telecom Technol. J. 11 (1993).

1990 (1)

G. Smestad, H. Ries, R. Winston, E. Yablonovitch, “The thermodynamic limits of light concentrators,” Solar Energy Mat. 21, 99–111 (1990).
[Crossref]

1982 (1)

1980 (1)

H. A. Ankermann, “Transmission of audio signals by infrared light carrier,” J. Soc. Motion Pict. Telev. Eng. 89, 834–837 (1980).

1979 (1)

F. R. Gfeller, U. H. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE 67, 1474–1486 (1979).
[Crossref]

Ankermann, H. A.

H. A. Ankermann, “Transmission of audio signals by infrared light carrier,” J. Soc. Motion Pict. Telev. Eng. 89, 834–837 (1980).

Audeh, M. D.

J. M. Kahn, J. R. Barry, M. D. Audeh, J. B. Carruthers, W. J. Krause, G. W. Marsh, “Nondirected infrared links for high-capacity wireless LAN's,” IEEE Personal Comm. Mag. 1, 12–25 (1994).
[Crossref]

Bapst, U. H.

F. R. Gfeller, U. H. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE 67, 1474–1486 (1979).
[Crossref]

Barry, J. R.

J. M. Kahn, J. R. Barry, M. D. Audeh, J. B. Carruthers, W. J. Krause, G. W. Marsh, “Nondirected infrared links for high-capacity wireless LAN's,” IEEE Personal Comm. Mag. 1, 12–25 (1994).
[Crossref]

J. R. Barry, “Wireless communication using nondirected infrared radiation,” Ph.D. dissertation (University of California at Berkeley, Berkeley, Calif., 1992).

Carruthers, J. B.

J. M. Kahn, J. R. Barry, M. D. Audeh, J. B. Carruthers, W. J. Krause, G. W. Marsh, “Nondirected infrared links for high-capacity wireless LAN's,” IEEE Personal Comm. Mag. 1, 12–25 (1994).
[Crossref]

Cassidy, S.

P. P. Smyth, M. McCullagh, D. Wisely, D. Wood, S. Ritchie, P. Eardley, S. Cassidy, “Optical wireless local area networks—enabling technologies,” Br. Telecom Technol. J. 11 (1993).

Eardley, P.

P. P. Smyth, M. McCullagh, D. Wisely, D. Wood, S. Ritchie, P. Eardley, S. Cassidy, “Optical wireless local area networks—enabling technologies,” Br. Telecom Technol. J. 11 (1993).

Gfeller, F. R.

F. R. Gfeller, U. H. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE 67, 1474–1486 (1979).
[Crossref]

Kahn, J. M.

G. W. Marsh, J. M. Kahn, “50-Mb/s diffuse infrared free-space link using on–off keying with decision feedback equalization,” IEEE Photon. Technol. Lett. 6, 1268–1270 (1994).
[Crossref]

J. M. Kahn, J. R. Barry, M. D. Audeh, J. B. Carruthers, W. J. Krause, G. W. Marsh, “Nondirected infrared links for high-capacity wireless LAN's,” IEEE Personal Comm. Mag. 1, 12–25 (1994).
[Crossref]

Kotzin, M. D.

M. E. Marhic, M. D. Kotzin, A. P. van den Heuvel, “Reflectors and immersion lenses for detectors of diffuse radiation,” J. Opt. Soc. Am. 72, 352–355 (1982).
[Crossref]

M. D. Kotzin, “Short-range communications using diffusely scattered infrared radiation,” Ph.D. dissertation (Northwestern University, Evanston, Ill., 1981).

M. D. Kotzin, A. P. van den Heuvel, “a Duplex infra-red systems for in-building communications,” in Proceedings of the IEEE Vehicular Technology Conference '86 (Institute of Electrical and Electronics Engineers, New York, 1986), pp. 179–185.

Krause, W. J.

J. M. Kahn, J. R. Barry, M. D. Audeh, J. B. Carruthers, W. J. Krause, G. W. Marsh, “Nondirected infrared links for high-capacity wireless LAN's,” IEEE Personal Comm. Mag. 1, 12–25 (1994).
[Crossref]

Macleod, H. A.

H. A. Macleod, Thin-Film Optical Filters (Hilger, London, 1969).

Marhic, M. E.

Marsh, G. W.

J. M. Kahn, J. R. Barry, M. D. Audeh, J. B. Carruthers, W. J. Krause, G. W. Marsh, “Nondirected infrared links for high-capacity wireless LAN's,” IEEE Personal Comm. Mag. 1, 12–25 (1994).
[Crossref]

G. W. Marsh, J. M. Kahn, “50-Mb/s diffuse infrared free-space link using on–off keying with decision feedback equalization,” IEEE Photon. Technol. Lett. 6, 1268–1270 (1994).
[Crossref]

McConnell, P. R.

D. R. Pauluzzi, P. R. McConnell, R. L. Poulin, “Free-space undirected infrared voice and data communications with a comparison to rf systems,” in Proceedings of the IEEE International Conference on Selected Topics in Wireless Communications (Institute of Electrical and Electronics Engineers, New York, 1992), pp. 279–285.
[Crossref]

McCullagh, M.

P. P. Smyth, M. McCullagh, D. Wisely, D. Wood, S. Ritchie, P. Eardley, S. Cassidy, “Optical wireless local area networks—enabling technologies,” Br. Telecom Technol. J. 11 (1993).

Morgan, S. P.

Pauluzzi, D. R.

D. R. Pauluzzi, P. R. McConnell, R. L. Poulin, “Free-space undirected infrared voice and data communications with a comparison to rf systems,” in Proceedings of the IEEE International Conference on Selected Topics in Wireless Communications (Institute of Electrical and Electronics Engineers, New York, 1992), pp. 279–285.
[Crossref]

Poulin, R. L.

D. R. Pauluzzi, P. R. McConnell, R. L. Poulin, “Free-space undirected infrared voice and data communications with a comparison to rf systems,” in Proceedings of the IEEE International Conference on Selected Topics in Wireless Communications (Institute of Electrical and Electronics Engineers, New York, 1992), pp. 279–285.
[Crossref]

Ramo, S.

S. Ramo, J. R. Whinnery, T. Van Duzer, Fields and Waves in Communication Electronics (Wiley, New York, 1984), Chap. 6, pp. 309–310.

Rancourt, J. D.

J. D. Rancourt, Optical Thin Films (Macmillan, New York, 1987).

Ries, H.

G. Smestad, H. Ries, R. Winston, E. Yablonovitch, “The thermodynamic limits of light concentrators,” Solar Energy Mat. 21, 99–111 (1990).
[Crossref]

Ritchie, S.

P. P. Smyth, M. McCullagh, D. Wisely, D. Wood, S. Ritchie, P. Eardley, S. Cassidy, “Optical wireless local area networks—enabling technologies,” Br. Telecom Technol. J. 11 (1993).

Savicki, J. P.

Smestad, G.

G. Smestad, H. Ries, R. Winston, E. Yablonovitch, “The thermodynamic limits of light concentrators,” Solar Energy Mat. 21, 99–111 (1990).
[Crossref]

Smyth, P. P.

P. P. Smyth, M. McCullagh, D. Wisely, D. Wood, S. Ritchie, P. Eardley, S. Cassidy, “Optical wireless local area networks—enabling technologies,” Br. Telecom Technol. J. 11 (1993).

van den Heuvel, A. P.

M. E. Marhic, M. D. Kotzin, A. P. van den Heuvel, “Reflectors and immersion lenses for detectors of diffuse radiation,” J. Opt. Soc. Am. 72, 352–355 (1982).
[Crossref]

M. D. Kotzin, A. P. van den Heuvel, “a Duplex infra-red systems for in-building communications,” in Proceedings of the IEEE Vehicular Technology Conference '86 (Institute of Electrical and Electronics Engineers, New York, 1986), pp. 179–185.

Van Duzer, T.

S. Ramo, J. R. Whinnery, T. Van Duzer, Fields and Waves in Communication Electronics (Wiley, New York, 1984), Chap. 6, pp. 309–310.

Whinnery, J. R.

S. Ramo, J. R. Whinnery, T. Van Duzer, Fields and Waves in Communication Electronics (Wiley, New York, 1984), Chap. 6, pp. 309–310.

Winston, R.

G. Smestad, H. Ries, R. Winston, E. Yablonovitch, “The thermodynamic limits of light concentrators,” Solar Energy Mat. 21, 99–111 (1990).
[Crossref]

Wisely, D.

P. P. Smyth, M. McCullagh, D. Wisely, D. Wood, S. Ritchie, P. Eardley, S. Cassidy, “Optical wireless local area networks—enabling technologies,” Br. Telecom Technol. J. 11 (1993).

Wood, D.

P. P. Smyth, M. McCullagh, D. Wisely, D. Wood, S. Ritchie, P. Eardley, S. Cassidy, “Optical wireless local area networks—enabling technologies,” Br. Telecom Technol. J. 11 (1993).

Yablonovitch, E.

G. Smestad, H. Ries, R. Winston, E. Yablonovitch, “The thermodynamic limits of light concentrators,” Solar Energy Mat. 21, 99–111 (1990).
[Crossref]

Appl. Opt. (1)

Br. Telecom Technol. J. (1)

P. P. Smyth, M. McCullagh, D. Wisely, D. Wood, S. Ritchie, P. Eardley, S. Cassidy, “Optical wireless local area networks—enabling technologies,” Br. Telecom Technol. J. 11 (1993).

IEEE Personal Comm. Mag. (1)

J. M. Kahn, J. R. Barry, M. D. Audeh, J. B. Carruthers, W. J. Krause, G. W. Marsh, “Nondirected infrared links for high-capacity wireless LAN's,” IEEE Personal Comm. Mag. 1, 12–25 (1994).
[Crossref]

IEEE Photon. Technol. Lett. (1)

G. W. Marsh, J. M. Kahn, “50-Mb/s diffuse infrared free-space link using on–off keying with decision feedback equalization,” IEEE Photon. Technol. Lett. 6, 1268–1270 (1994).
[Crossref]

J. Opt. Soc. Am. (1)

J. Soc. Motion Pict. Telev. Eng. (1)

H. A. Ankermann, “Transmission of audio signals by infrared light carrier,” J. Soc. Motion Pict. Telev. Eng. 89, 834–837 (1980).

Proc. IEEE (1)

F. R. Gfeller, U. H. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE 67, 1474–1486 (1979).
[Crossref]

Solar Energy Mat. (1)

G. Smestad, H. Ries, R. Winston, E. Yablonovitch, “The thermodynamic limits of light concentrators,” Solar Energy Mat. 21, 99–111 (1990).
[Crossref]

Other (11)

M. D. Kotzin, “Short-range communications using diffusely scattered infrared radiation,” Ph.D. dissertation (Northwestern University, Evanston, Ill., 1981).

M. D. Kotzin, A. P. van den Heuvel, “a Duplex infra-red systems for in-building communications,” in Proceedings of the IEEE Vehicular Technology Conference '86 (Institute of Electrical and Electronics Engineers, New York, 1986), pp. 179–185.

J. R. Barry, “Wireless communication using nondirected infrared radiation,” Ph.D. dissertation (University of California at Berkeley, Berkeley, Calif., 1992).

D. R. Pauluzzi, P. R. McConnell, R. L. Poulin, “Free-space undirected infrared voice and data communications with a comparison to rf systems,” in Proceedings of the IEEE International Conference on Selected Topics in Wireless Communications (Institute of Electrical and Electronics Engineers, New York, 1992), pp. 279–285.
[Crossref]

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985), p. 565.

Safety of Laser Products—Part 1, Equipment Classification, Requirements, and User's Guide, 1st ed., International Standard IEC-821-1 (International Electrotechnical Commission, Geneva, 1993).

S. Ramo, J. R. Whinnery, T. Van Duzer, Fields and Waves in Communication Electronics (Wiley, New York, 1984), Chap. 6, pp. 309–310.

H. A. Macleod, Thin-Film Optical Filters (Hilger, London, 1969).

J. D. Rancourt, Optical Thin Films (Macmillan, New York, 1987).

Product Catalog (Melles Griot, Irvine, Calif., 1991), Chap. 11, pp. 25–30.

Product Catalog (Optical Coating Laboratory, Inc., Santa Rosa, Calif., 1990).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Comparison between the actual transmission and analytical model of Eq. (8) with Δλ = 36.3 nm, λnormal = 850 nm, ns = 2.293, m = 3, and T0 = 0.92.

Fig. 2
Fig. 2

Dependence of the center wavelength on the angle of incidence for the filter of Fig. 1. Barely discernible is the analytic approximation curve of Eq. (6) with ns/n1 = 2.293.

Fig. 3
Fig. 3

Filter transmission at λ0 = 810 nm as a function of the angle of incidence for the filter of Fig. 1: the actual (solid curve) and analytical model [dashed curve, from Eq. (8) with Δλ = 36.3 nm, m = 3, T0 = 0.92, λnormal = 850 nm, and ns/n1 = 2.293 or θ ̂ = 44 ° ].

Fig. 4
Fig. 4

Proposed receiver optics for the (a) planar filter and (b) spherical filter; (c) expanded schematic diagram for both cases.

Fig. 5
Fig. 5

Dependence of the normal-incidence gain on the lens radius, assuming that θ t = 90°, there are no reflections, A = 1 cm2, and ψ = 0°. Also shown is the maximum angle of incidence, as defined in Subsection 3.C, assuming that θ t = 90°, A = 1 cm2, and ψ ∈ [0, π/2).

Fig. 6
Fig. 6

Dependence of gain on the angle of incidence: (a) θ t = 70°, (b) θ t = 90°, (c) θ t = 110°.

Fig. 7
Fig. 7

Density functions (a) at the lens input and (b) at the lens output (θ t = 90°, R = 2 cm, n = 1.8, A = 1 cm2).

Fig. 8
Fig. 8

Cross-sectional view of the coverage area.

Fig. 9
Fig. 9

Optimal transmitter radiation patterns and effective areas for a 4-m cell radius: (a), (b) planar filter; (c), (d) hemispherical filter.

Fig. 10
Fig. 10

Required transmitter optical power versus cell radius.

Tables (2)

Tables Icon

Table 1 Transmission Calculations for Fig. 6

Tables Icon

Table 2 Sample Optimization Results

Equations (32)

Equations on this page are rendered with MathJax. Learn more.

T ( θ 1 ) = 1 ½ ( | ρ TE | 2 + | ρ TM | 2 ) ,
ρ = N 1 η 2 N 1 + η 2 ,
N k = { n k / cos θ k for TE n k cos θ k for TM , k { 2 , , K } ,
η k = N k η k + 1 cos β k + j N k sin β k N k cos β k + j η k + 1 sin β k , k { 2 , , K } ,
θ k = sin 1 ( n k 1 n k sin θ k 1 ) , k { 2 , , K } .
λ ̂ ( θ ) = λ normal [ 1 ( n 1 / n s ) 2 sin 2 θ ] 1 / 2 ,
λ ̂ ( θ ; θ ̂ ) = λ 0 ( n s 2 n 1 2 sin 2 θ n s 2 n 1 2 sin 2 θ ̂ ) 1 / 2 .
T ( θ ; Δ λ , θ ̂ ) = T 0 1 + [ λ 0 λ ̂ ( θ ; θ ̂ ) Δ λ / 2 ] 2 m .
θ c sin 1 [ n s n 1 ( Δ λ λ 0 ) 1 / 2 ] .
A eff = S 0 T ( θ 0 ) T ( θ 2 ) T ( θ 3 ) T ( θ 4 ) cos ( θ 0 ) d S ,
r = r G ( R 2 r 2 G ) 1 / 2 tan ( sin 1 r G R sin 1 r G nR ) .
T ̅ ( ψ ) = 0 π / 2 f ψ ( 0 ) ( θ ) T ( θ ; Δ λ , θ ̂ ) d θ ( hemispherical ) , T ̅ ( ψ ) = 0 π / 2 f ψ ( 2 ) ( θ ) T ( θ ; Δ λ , θ ̂ ) d θ ( planar ) ,
θ max = sin 1 { nr R [ 1 + ( R / r ) 2 cos 2 θ t ] 1 / 2 } .
R nr n s / n 1 ( λ 0 Δ λ ) 1 / 2 .
R nr ( 1 n 2 cos 2 θ t ) 1 / 2 ,
Q ( x ) = ( 2 π ) 1 / 2 x exp ( t 2 / 2 ) d t ,
SNR = r p H 2 P 2 A eff 2 q p bg Δ λ A bg B .
A bg = n 2 T 0 A ,
A eff = γ ( ψ ) n 2 T ̅ ( ψ ) A cos ψ ,
γ ( ψ ) = 1 n 2 A cos ψ S 0 cos θ 0 d S ,
T ̅ ( ψ ) = S 0 T ( θ 0 ) T ( θ 2 ) T ( θ 3 ) T ( θ 4 ) cos θ 0 d S S 0 cos θ 0 d S .
SNR = r p H 2 P 2 γ 2 T ̅ ( ψ ) 2 cos 2 ψ q p bg Δ λ T 0 B n 2 A .
2 π 0 π / 2 R ( ψ ) sin ψ d ψ = 1 .
R 0 ( ψ ) = P 0 P h 2 ( ψ ) A eff cos 2 ψ ,
P 0 = P 2 π 0 ψ C h 2 ( ψ ) sin ψ A eff cos 2 ψ d ψ .
SNR = r P 2 q p bg T 0 B n 2 A Γ ,
Γ = 1 Δ λ [ 2 π 0 ψ C h 2 ( ψ ) sin ψ γ ( ψ ) T ̅ ( ψ ) cos 3 ψ d ψ ] 2 .
θ ̂
1 = 2 π 0 ψ C R 0 ( ψ ) sin ψ d ψ + 2 π 0 ψ C δ R ( ψ ) sin ψ d ψ = 1 + 2 π 0 ψ C δ R ( ψ ) sin ψ d ψ .
P 0 = 1 h ( ψ ) 2 R 0 ( ψ ) cos 3 ψ A eff ( ψ ) .
P 1 ( ψ ) = 1 h ( ψ ) 2 [ R 0 ( ψ ) + δ R ( ψ ) ] cos 3 ψ A eff ( ψ ) = P 0 + 1 h ( ψ ) 2 δ R ( ψ ) cos 3 ψ A eff ( ψ ) .
P 1 ( ψ * ) = P 0 + 1 h ( ψ * ) 2 δ R ( ψ * ) cos 3 ψ * A eff ( ψ * ) < P 0 ,

Metrics