Abstract

We report the implementation of a liquid crystal-on-silicon, three-dimensional (3-D) diffractive display based on the partial pixel architecture. The display generates multiple stereoscopic images that are perceived as a static 3-D scene with one-dimensional motion parallax in a manner that is functionally equivalent to a holographic stereogram. The images are created with diffraction gratings formed in a thin liquid crystal layer by fringing electric fields from transparent indium tin oxide interdigitated electrodes. The electrodes are controlled by an external drive signal that permits the 3-D scene to be turned on and off. The display has a contrast ratio of 5.8, which is limited principally by optical scatter caused by extraneous fringing fields. These scatter sources can be readily eliminated. The display reported herein is the first step toward a real-time partial pixel architecture display in which large numbers of dynamic gratings are independently controlled by underlying silicon drive circuitry.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription