Abstract

We report the implementation of a liquid crystal-on-silicon, three-dimensional (3-D) diffractive display based on the partial pixel architecture. The display generates multiple stereoscopic images that are perceived as a static 3-D scene with one-dimensional motion parallax in a manner that is functionally equivalent to a holographic stereogram. The images are created with diffraction gratings formed in a thin liquid crystal layer by fringing electric fields from transparent indium tin oxide interdigitated electrodes. The electrodes are controlled by an external drive signal that permits the 3-D scene to be turned on and off. The display has a contrast ratio of 5.8, which is limited principally by optical scatter caused by extraneous fringing fields. These scatter sources can be readily eliminated. The display reported herein is the first step toward a real-time partial pixel architecture display in which large numbers of dynamic gratings are independently controlled by underlying silicon drive circuitry.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P.St. Hilaire, S.A. Benton, M. Lucente, M. L. Jepson, J. Kollin, H. Yoshikawa, J. Underkoffler, “Electronic display system for computational holography,” in Practical Holography IV, S. A. Benton, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1212, 174–182 (1990).
  2. P.St. Hilaire, S. A. Benton, M. Lucente, H. Yoshikawa, J. Underkoffler, “Real-time holographic display: improvements using a multichannel acousto-optic modulator and holographic optical elements,” in Practical Holography V, S. A. Benton, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1461, 256–261 (1991).
  3. P.St. Hilaire, S. A. Benton, M. Lucente, “Synthetic aperture holography: a novel approach to three-dimensional displays” J. Opt. Soc. Am. A 9, 1969–1977 (1992).
    [CrossRef]
  4. N. Hashimoto, S. Morokawa, “Real-time electroholographic system using liquid crystal television spatial light modulators,” J. Electr. Imaging 2, 93–99 (1993).
    [CrossRef]
  5. L. Onural, G. Bozdagi, A. Atalar, “New high-resolution display device for holographic three-dimensional video: principles and simulations,” Opt. Eng. 33, 835–844 (1994).
    [CrossRef]
  6. G. P. Nordin, J. H. Kulick, M. Jones, P. Nasiatka, R. G. Lindquist, S. T. Kowel, “Demonstration of a novel 3-D autostereoscopic display,” Opt. Lett. 19, 901–903 (1994).
    [CrossRef] [PubMed]
  7. J. H. Kulick, S. T. Kowel, G. P. Nordin, A. Parker, R. Lindquist, P. Nasiatka, M. Jones, “ICVision—a VLSI-based diffractive display for real-time display of holographic stereograms,” in Practical Holography VIII, S. A. Benton, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2176, 2–11 (1994).
  8. J. H. Kulick, G. P. Nordin, A. Parker, S. T. Kowel, R. G. Lindquist, M. Jones, P. Nasiatka, “Partial pixels: a novel 3-D diffracting display architecture,” J. Opt. Soc. Am. A 12, 73–83 (1994).
    [CrossRef]
  9. M. Lucente, “Optimization of hologram computation for realtime display,” in Practical Holography VI, S. A. Benton, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1667, 32–43 (1992).
  10. R. G. Lindquist, J. H. Kulick, G. P. Nordin, J. M. Jarem, S. T. Kowel, M. Friends, T. M. Leslie, “High-resolution liquid crystal phase grating formed by fringing fields from interdigitated electrodes,” Opt. Lett. 19, 670–672 (1994).
    [CrossRef] [PubMed]
  11. S. A. Benton, “Survey of holographic stereograms,” in Processing and Display of Three-Dimensional Data, J. J. Pearson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.367, 15–19 (1982).
    [CrossRef]

1994

1993

N. Hashimoto, S. Morokawa, “Real-time electroholographic system using liquid crystal television spatial light modulators,” J. Electr. Imaging 2, 93–99 (1993).
[CrossRef]

1992

Atalar, A.

L. Onural, G. Bozdagi, A. Atalar, “New high-resolution display device for holographic three-dimensional video: principles and simulations,” Opt. Eng. 33, 835–844 (1994).
[CrossRef]

Benton, S. A.

P.St. Hilaire, S. A. Benton, M. Lucente, “Synthetic aperture holography: a novel approach to three-dimensional displays” J. Opt. Soc. Am. A 9, 1969–1977 (1992).
[CrossRef]

P.St. Hilaire, S. A. Benton, M. Lucente, H. Yoshikawa, J. Underkoffler, “Real-time holographic display: improvements using a multichannel acousto-optic modulator and holographic optical elements,” in Practical Holography V, S. A. Benton, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1461, 256–261 (1991).

S. A. Benton, “Survey of holographic stereograms,” in Processing and Display of Three-Dimensional Data, J. J. Pearson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.367, 15–19 (1982).
[CrossRef]

Benton, S.A.

P.St. Hilaire, S.A. Benton, M. Lucente, M. L. Jepson, J. Kollin, H. Yoshikawa, J. Underkoffler, “Electronic display system for computational holography,” in Practical Holography IV, S. A. Benton, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1212, 174–182 (1990).

Bozdagi, G.

L. Onural, G. Bozdagi, A. Atalar, “New high-resolution display device for holographic three-dimensional video: principles and simulations,” Opt. Eng. 33, 835–844 (1994).
[CrossRef]

Friends, M.

Hashimoto, N.

N. Hashimoto, S. Morokawa, “Real-time electroholographic system using liquid crystal television spatial light modulators,” J. Electr. Imaging 2, 93–99 (1993).
[CrossRef]

Hilaire, P.St.

P.St. Hilaire, S. A. Benton, M. Lucente, “Synthetic aperture holography: a novel approach to three-dimensional displays” J. Opt. Soc. Am. A 9, 1969–1977 (1992).
[CrossRef]

P.St. Hilaire, S.A. Benton, M. Lucente, M. L. Jepson, J. Kollin, H. Yoshikawa, J. Underkoffler, “Electronic display system for computational holography,” in Practical Holography IV, S. A. Benton, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1212, 174–182 (1990).

P.St. Hilaire, S. A. Benton, M. Lucente, H. Yoshikawa, J. Underkoffler, “Real-time holographic display: improvements using a multichannel acousto-optic modulator and holographic optical elements,” in Practical Holography V, S. A. Benton, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1461, 256–261 (1991).

Jarem, J. M.

Jepson, M. L.

P.St. Hilaire, S.A. Benton, M. Lucente, M. L. Jepson, J. Kollin, H. Yoshikawa, J. Underkoffler, “Electronic display system for computational holography,” in Practical Holography IV, S. A. Benton, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1212, 174–182 (1990).

Jones, M.

G. P. Nordin, J. H. Kulick, M. Jones, P. Nasiatka, R. G. Lindquist, S. T. Kowel, “Demonstration of a novel 3-D autostereoscopic display,” Opt. Lett. 19, 901–903 (1994).
[CrossRef] [PubMed]

J. H. Kulick, G. P. Nordin, A. Parker, S. T. Kowel, R. G. Lindquist, M. Jones, P. Nasiatka, “Partial pixels: a novel 3-D diffracting display architecture,” J. Opt. Soc. Am. A 12, 73–83 (1994).
[CrossRef]

J. H. Kulick, S. T. Kowel, G. P. Nordin, A. Parker, R. Lindquist, P. Nasiatka, M. Jones, “ICVision—a VLSI-based diffractive display for real-time display of holographic stereograms,” in Practical Holography VIII, S. A. Benton, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2176, 2–11 (1994).

Kollin, J.

P.St. Hilaire, S.A. Benton, M. Lucente, M. L. Jepson, J. Kollin, H. Yoshikawa, J. Underkoffler, “Electronic display system for computational holography,” in Practical Holography IV, S. A. Benton, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1212, 174–182 (1990).

Kowel, S. T.

Kulick, J. H.

Leslie, T. M.

Lindquist, R.

J. H. Kulick, S. T. Kowel, G. P. Nordin, A. Parker, R. Lindquist, P. Nasiatka, M. Jones, “ICVision—a VLSI-based diffractive display for real-time display of holographic stereograms,” in Practical Holography VIII, S. A. Benton, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2176, 2–11 (1994).

Lindquist, R. G.

Lucente, M.

P.St. Hilaire, S. A. Benton, M. Lucente, “Synthetic aperture holography: a novel approach to three-dimensional displays” J. Opt. Soc. Am. A 9, 1969–1977 (1992).
[CrossRef]

P.St. Hilaire, S.A. Benton, M. Lucente, M. L. Jepson, J. Kollin, H. Yoshikawa, J. Underkoffler, “Electronic display system for computational holography,” in Practical Holography IV, S. A. Benton, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1212, 174–182 (1990).

M. Lucente, “Optimization of hologram computation for realtime display,” in Practical Holography VI, S. A. Benton, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1667, 32–43 (1992).

P.St. Hilaire, S. A. Benton, M. Lucente, H. Yoshikawa, J. Underkoffler, “Real-time holographic display: improvements using a multichannel acousto-optic modulator and holographic optical elements,” in Practical Holography V, S. A. Benton, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1461, 256–261 (1991).

Morokawa, S.

N. Hashimoto, S. Morokawa, “Real-time electroholographic system using liquid crystal television spatial light modulators,” J. Electr. Imaging 2, 93–99 (1993).
[CrossRef]

Nasiatka, P.

J. H. Kulick, G. P. Nordin, A. Parker, S. T. Kowel, R. G. Lindquist, M. Jones, P. Nasiatka, “Partial pixels: a novel 3-D diffracting display architecture,” J. Opt. Soc. Am. A 12, 73–83 (1994).
[CrossRef]

G. P. Nordin, J. H. Kulick, M. Jones, P. Nasiatka, R. G. Lindquist, S. T. Kowel, “Demonstration of a novel 3-D autostereoscopic display,” Opt. Lett. 19, 901–903 (1994).
[CrossRef] [PubMed]

J. H. Kulick, S. T. Kowel, G. P. Nordin, A. Parker, R. Lindquist, P. Nasiatka, M. Jones, “ICVision—a VLSI-based diffractive display for real-time display of holographic stereograms,” in Practical Holography VIII, S. A. Benton, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2176, 2–11 (1994).

Nordin, G. P.

Onural, L.

L. Onural, G. Bozdagi, A. Atalar, “New high-resolution display device for holographic three-dimensional video: principles and simulations,” Opt. Eng. 33, 835–844 (1994).
[CrossRef]

Parker, A.

J. H. Kulick, G. P. Nordin, A. Parker, S. T. Kowel, R. G. Lindquist, M. Jones, P. Nasiatka, “Partial pixels: a novel 3-D diffracting display architecture,” J. Opt. Soc. Am. A 12, 73–83 (1994).
[CrossRef]

J. H. Kulick, S. T. Kowel, G. P. Nordin, A. Parker, R. Lindquist, P. Nasiatka, M. Jones, “ICVision—a VLSI-based diffractive display for real-time display of holographic stereograms,” in Practical Holography VIII, S. A. Benton, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2176, 2–11 (1994).

Underkoffler, J.

P.St. Hilaire, S.A. Benton, M. Lucente, M. L. Jepson, J. Kollin, H. Yoshikawa, J. Underkoffler, “Electronic display system for computational holography,” in Practical Holography IV, S. A. Benton, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1212, 174–182 (1990).

P.St. Hilaire, S. A. Benton, M. Lucente, H. Yoshikawa, J. Underkoffler, “Real-time holographic display: improvements using a multichannel acousto-optic modulator and holographic optical elements,” in Practical Holography V, S. A. Benton, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1461, 256–261 (1991).

Yoshikawa, H.

P.St. Hilaire, S. A. Benton, M. Lucente, H. Yoshikawa, J. Underkoffler, “Real-time holographic display: improvements using a multichannel acousto-optic modulator and holographic optical elements,” in Practical Holography V, S. A. Benton, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1461, 256–261 (1991).

P.St. Hilaire, S.A. Benton, M. Lucente, M. L. Jepson, J. Kollin, H. Yoshikawa, J. Underkoffler, “Electronic display system for computational holography,” in Practical Holography IV, S. A. Benton, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1212, 174–182 (1990).

J. Electr. Imaging

N. Hashimoto, S. Morokawa, “Real-time electroholographic system using liquid crystal television spatial light modulators,” J. Electr. Imaging 2, 93–99 (1993).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Eng.

L. Onural, G. Bozdagi, A. Atalar, “New high-resolution display device for holographic three-dimensional video: principles and simulations,” Opt. Eng. 33, 835–844 (1994).
[CrossRef]

Opt. Lett.

Other

S. A. Benton, “Survey of holographic stereograms,” in Processing and Display of Three-Dimensional Data, J. J. Pearson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.367, 15–19 (1982).
[CrossRef]

J. H. Kulick, S. T. Kowel, G. P. Nordin, A. Parker, R. Lindquist, P. Nasiatka, M. Jones, “ICVision—a VLSI-based diffractive display for real-time display of holographic stereograms,” in Practical Holography VIII, S. A. Benton, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2176, 2–11 (1994).

M. Lucente, “Optimization of hologram computation for realtime display,” in Practical Holography VI, S. A. Benton, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1667, 32–43 (1992).

P.St. Hilaire, S.A. Benton, M. Lucente, M. L. Jepson, J. Kollin, H. Yoshikawa, J. Underkoffler, “Electronic display system for computational holography,” in Practical Holography IV, S. A. Benton, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1212, 174–182 (1990).

P.St. Hilaire, S. A. Benton, M. Lucente, H. Yoshikawa, J. Underkoffler, “Real-time holographic display: improvements using a multichannel acousto-optic modulator and holographic optical elements,” in Practical Holography V, S. A. Benton, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1461, 256–261 (1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Partial pixel architecture display geometry (after Ref. 6).

Fig. 2
Fig. 2

Schematic diagram of a liquid crystal film on interdigi-tated electrodes for (a) no applied voltage and (b) with an applied voltage.

Fig. 3
Fig. 3

Three-dimensional scene in which the letters U, A, and H are represented as a series of dots. The letter A is in the plane of the device, whereas the letters U and H are in planes located 6 mm in front of and behind the letter A, respectively (after Ref. 6).

Fig. 4
Fig. 4

Schematic diagram of a portion of the liquid crystal-on-silicon device.

Fig. 5
Fig. 5

Representation of a single pixel composed of an array of partial pixels. The number in each partial pixel corresponds to the index of the virtual viewing slit into which it diffracts light.

Fig. 6
Fig. 6

ITO electrode pattern for a single pixel with a network of bus bars and interdigitated electrodes for 20 partial pixels.

Fig. 7
Fig. 7

ITO electrode pattern for a single partial pixel, including the interdigitated electrodes and the power and ground bus bars. The dashed line represents the aperture of the partial pixel.

Fig. 8
Fig. 8

ITO electrode pattern for the entire device. Although only a fraction of the pixels were needed to display the 3-D scene of Fig. 3, the bus bars for all 23 × 33 pixels were included for ease in automating the electrode layout. The circled region is discussed in Subsection 5.C.

Fig. 9
Fig. 9

Scanning electron microscope photographs of (a) ITO electrodes on the top SiO2 layer of a processed die, and (b) a cross section showing the 1.5-μm-thick SiO2 layer on top of the aluminum mirror.

Fig. 10
Fig. 10

(a) Side and (b) top views of the readout geometry.

Fig. 11
Fig. 11

Photographs of sample (a) left and (b) right eye images generated by the device with a 10-V applied square-wave signal.

Fig. 12
Fig. 12

Photomicrograph of a pixel in which all 20 partial pixels are present. (Details are provided in the text.)

Fig. 13
Fig. 13

Average usable partial pixel diffraction efficiency as a function of the applied voltage.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

C = P on / P s ,
C typ = P on / P off ,
η p = P p / P i ,
η = P diff / P i .
P s = P m ( A d / A m ) ,

Metrics