Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Slurry particle size evolution during the polishing of optical glass

Not Accessible

Your library or personal account may give you access

Abstract

The particle size distribution of aqueous metal-oxide slurries can evolve during the polishing of optical glass in response to changes in mechanical and chemical process factors. The size-evolution phenomenon and its consequences were systematically studied in a planar continuous-polishing process. The concurrent application of electrokinetic techniques to characterize common optical shop materials has contributed new insight into the nature of silicate glass polishing by demonstrating the pivotal role of fluid chemistry, particularly pH, in maintaining electrokinetically favorable conditions for a well-dispersed polishing agent. According to the proposed slurry-charge-control effect, a well-dispersed polishing agent is the key to obtaining the smoothest possible glass surfaces, especially when a recirculated slurry is used.

© 1995 Optical Society of America

Full Article  |  PDF Article
More Like This
Particle size and surfactant effects on chemical mechanical polishing of glass using silica-based slurry

Zefang Zhang, Weili Liu, and Zhitang Song
Appl. Opt. 49(28) 5480-5485 (2010)

Effect of solvent film and zeta potential on interfacial interactions during optical glass polishing

Shangjuan Liang, Xiang Jiao, Xiaohong Tan, and Jianqiang Zhu
Appl. Opt. 57(20) 5657-5665 (2018)

Removal rate model for magnetorheological finishing of glass

Jessica E. DeGroote, Anne E. Marino, John P. Wilson, Amy L. Bishop, John C. Lambropoulos, and Stephen D. Jacobs
Appl. Opt. 46(32) 7927-7941 (2007)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (8)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.