Abstract

We developed a far-infrared Fabry–Perot filter constructed from a single silicon substrate. The limiting resolving power caused by beam divergence of a silicon-gap Fabry–Perot filter is approximately 10 times higher than that of a vacuum-gap Fabry–Perot filter because of the large index of refraction of silicon. The filter thus permits compact, high-throughput optical systems. Metal mesh patterns microlithographed on each face provide enhanced, wavelength-dependent face reflectivity. We tested the performance of filters with metal mesh patterns consisting of inductive crosses and capacitive squares. A Fabry–Perot filter developed for a rocketborne astrophysics experiment with a capacitive square metal mesh pattern achieves a resolving power of λ/Δλfwhm = 160 at λ = 158 μm, with a peak transmittance of 37% over an active aperture of 6.9 mm for an f/3.8 optical beam at 15° incidence. The absorptivity of a 240-μm thick silicon substrate patterned with capacitive metal mesh is A ≲ 1% per pass, including loss in both the silicon and the metal mesh.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. F. Renk, L. Genzel, “Interference filters and Fabry–Perot interferometers for the far infrared,” Appl. Opt. 1, 643–648 (1962).
    [CrossRef]
  2. J. C. Lecullier, G. Chanin, “A scanning Fabry–Perot interferometer for the 50–1000 μm range,” Infrared Phys. 16, 273–278 (1976).
    [CrossRef]
  3. A. Poglitsch, J. W. Beeman, N. Geis, R. Genzel, M. Haggerty, E. E. Haller, J. Jackson, M. Rumitz, G. J. Stacey, C. H. Townes, “The MPE/UCB far-infrared imaging Fabry–Perot interferometer (FIFI),” Int. J. Infrared Mill. Waves 12, 859–884 (1991).
    [CrossRef]
  4. T. Nakagawa, H. Okuda, H. Shibai, H. Matsuhara, Y. Kobayashi, N. Hiromoto, “Liquid helium cooled Fabry–Perot spectrometer and the frequency switching method for far-infrared spectroscopic observations,” in Instrumentation in Astronomy VII, D. L. Crawford, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1235, 97–107 (1990).
  5. J. J. Bock, V. V. Hristov, M. Kawada, H. Matsuhara, T. Matsumoto, S. Matsuura, P. D. Mauskopf, P. L. Richards, M. Tanaka, A. E. Lange, “Observation of [C ii] 158-μm emission from the diffuse interstellar medium,” Astrophys. J. Lett. 410, L115–L118 (1993).
    [CrossRef]
  6. H. Shibai, M. Yui, H. Matsuhara, N. Hiromoto, T. Nakagawa, H. Okuda, “Far-infrared line mapper (FILM) on the IRTS,” Astrophys. J. 428, 377–383 (1994).
    [CrossRef]
  7. P. E. Clegg, “ISO long-wavelength spectrometer,” in Infrared Spaceborne Remote Sensing, M. S. Scholl, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2019, 15–27 (1993).
  8. H. Matsuhara, M. Kawada, T. Matsumoto, S. Matsuura, M. Tanaka, J. J. Bock, V. V. Hristov, A. E. Lange, P. D. Mauskopf, P. L. Richards, “A rocket-borne instrument for observations of near infrared and far-infrared extended astrophysical emission,” Publ. Astron. Soc. Jpn. 46, 665–676 (1994).
  9. E. V. Loewenstein, D. R. Smith, R. L. Morgan, “Optical constants of far infrared materials. 2: Crystalline solids,” Appl. Opt. 12, 398–406 (1973).
    [CrossRef] [PubMed]
  10. R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37–55 (1967).
    [CrossRef]
  11. L. B. Whitbourn, R. C. Compton, “Equivalent-circuit formulas for metal grid reflectors at a dielectric boundary,” Appl. Opt. 24, 217–220 (1985).
    [CrossRef] [PubMed]
  12. D. H. Dawes, R. C. McPhedran, L. B. Whitbourn, “Thin capacitive meshes on a dielectric boundary: theory and experiment,” Appl. Opt. 28, 3498–3510 (1989).
    [CrossRef] [PubMed]
  13. D. D. Nolte, A. E. Lange, P. L. Richards, “Far-infrared dichroic bandpass filters,” Appl. Opt. 24, 1541–1545 (1985).
    [CrossRef] [PubMed]
  14. Virginia Semiconductor, Fredricksburg, Va. 22401.
  15. G. K. White, Experimental Techniques in Low-Temperature Physics (Clarendon, Oxford, 1979), p. 318.
  16. Bomem DA3, Bomem Inc., Quebec G2E 5S5, Canada.

1994

H. Shibai, M. Yui, H. Matsuhara, N. Hiromoto, T. Nakagawa, H. Okuda, “Far-infrared line mapper (FILM) on the IRTS,” Astrophys. J. 428, 377–383 (1994).
[CrossRef]

H. Matsuhara, M. Kawada, T. Matsumoto, S. Matsuura, M. Tanaka, J. J. Bock, V. V. Hristov, A. E. Lange, P. D. Mauskopf, P. L. Richards, “A rocket-borne instrument for observations of near infrared and far-infrared extended astrophysical emission,” Publ. Astron. Soc. Jpn. 46, 665–676 (1994).

1993

J. J. Bock, V. V. Hristov, M. Kawada, H. Matsuhara, T. Matsumoto, S. Matsuura, P. D. Mauskopf, P. L. Richards, M. Tanaka, A. E. Lange, “Observation of [C ii] 158-μm emission from the diffuse interstellar medium,” Astrophys. J. Lett. 410, L115–L118 (1993).
[CrossRef]

1991

A. Poglitsch, J. W. Beeman, N. Geis, R. Genzel, M. Haggerty, E. E. Haller, J. Jackson, M. Rumitz, G. J. Stacey, C. H. Townes, “The MPE/UCB far-infrared imaging Fabry–Perot interferometer (FIFI),” Int. J. Infrared Mill. Waves 12, 859–884 (1991).
[CrossRef]

1989

1985

1976

J. C. Lecullier, G. Chanin, “A scanning Fabry–Perot interferometer for the 50–1000 μm range,” Infrared Phys. 16, 273–278 (1976).
[CrossRef]

1973

1967

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37–55 (1967).
[CrossRef]

1962

Beeman, J. W.

A. Poglitsch, J. W. Beeman, N. Geis, R. Genzel, M. Haggerty, E. E. Haller, J. Jackson, M. Rumitz, G. J. Stacey, C. H. Townes, “The MPE/UCB far-infrared imaging Fabry–Perot interferometer (FIFI),” Int. J. Infrared Mill. Waves 12, 859–884 (1991).
[CrossRef]

Bock, J. J.

H. Matsuhara, M. Kawada, T. Matsumoto, S. Matsuura, M. Tanaka, J. J. Bock, V. V. Hristov, A. E. Lange, P. D. Mauskopf, P. L. Richards, “A rocket-borne instrument for observations of near infrared and far-infrared extended astrophysical emission,” Publ. Astron. Soc. Jpn. 46, 665–676 (1994).

J. J. Bock, V. V. Hristov, M. Kawada, H. Matsuhara, T. Matsumoto, S. Matsuura, P. D. Mauskopf, P. L. Richards, M. Tanaka, A. E. Lange, “Observation of [C ii] 158-μm emission from the diffuse interstellar medium,” Astrophys. J. Lett. 410, L115–L118 (1993).
[CrossRef]

Chanin, G.

J. C. Lecullier, G. Chanin, “A scanning Fabry–Perot interferometer for the 50–1000 μm range,” Infrared Phys. 16, 273–278 (1976).
[CrossRef]

Clegg, P. E.

P. E. Clegg, “ISO long-wavelength spectrometer,” in Infrared Spaceborne Remote Sensing, M. S. Scholl, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2019, 15–27 (1993).

Compton, R. C.

Dawes, D. H.

Geis, N.

A. Poglitsch, J. W. Beeman, N. Geis, R. Genzel, M. Haggerty, E. E. Haller, J. Jackson, M. Rumitz, G. J. Stacey, C. H. Townes, “The MPE/UCB far-infrared imaging Fabry–Perot interferometer (FIFI),” Int. J. Infrared Mill. Waves 12, 859–884 (1991).
[CrossRef]

Genzel, L.

Genzel, R.

A. Poglitsch, J. W. Beeman, N. Geis, R. Genzel, M. Haggerty, E. E. Haller, J. Jackson, M. Rumitz, G. J. Stacey, C. H. Townes, “The MPE/UCB far-infrared imaging Fabry–Perot interferometer (FIFI),” Int. J. Infrared Mill. Waves 12, 859–884 (1991).
[CrossRef]

Haggerty, M.

A. Poglitsch, J. W. Beeman, N. Geis, R. Genzel, M. Haggerty, E. E. Haller, J. Jackson, M. Rumitz, G. J. Stacey, C. H. Townes, “The MPE/UCB far-infrared imaging Fabry–Perot interferometer (FIFI),” Int. J. Infrared Mill. Waves 12, 859–884 (1991).
[CrossRef]

Haller, E. E.

A. Poglitsch, J. W. Beeman, N. Geis, R. Genzel, M. Haggerty, E. E. Haller, J. Jackson, M. Rumitz, G. J. Stacey, C. H. Townes, “The MPE/UCB far-infrared imaging Fabry–Perot interferometer (FIFI),” Int. J. Infrared Mill. Waves 12, 859–884 (1991).
[CrossRef]

Hiromoto, N.

H. Shibai, M. Yui, H. Matsuhara, N. Hiromoto, T. Nakagawa, H. Okuda, “Far-infrared line mapper (FILM) on the IRTS,” Astrophys. J. 428, 377–383 (1994).
[CrossRef]

T. Nakagawa, H. Okuda, H. Shibai, H. Matsuhara, Y. Kobayashi, N. Hiromoto, “Liquid helium cooled Fabry–Perot spectrometer and the frequency switching method for far-infrared spectroscopic observations,” in Instrumentation in Astronomy VII, D. L. Crawford, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1235, 97–107 (1990).

Hristov, V. V.

H. Matsuhara, M. Kawada, T. Matsumoto, S. Matsuura, M. Tanaka, J. J. Bock, V. V. Hristov, A. E. Lange, P. D. Mauskopf, P. L. Richards, “A rocket-borne instrument for observations of near infrared and far-infrared extended astrophysical emission,” Publ. Astron. Soc. Jpn. 46, 665–676 (1994).

J. J. Bock, V. V. Hristov, M. Kawada, H. Matsuhara, T. Matsumoto, S. Matsuura, P. D. Mauskopf, P. L. Richards, M. Tanaka, A. E. Lange, “Observation of [C ii] 158-μm emission from the diffuse interstellar medium,” Astrophys. J. Lett. 410, L115–L118 (1993).
[CrossRef]

Jackson, J.

A. Poglitsch, J. W. Beeman, N. Geis, R. Genzel, M. Haggerty, E. E. Haller, J. Jackson, M. Rumitz, G. J. Stacey, C. H. Townes, “The MPE/UCB far-infrared imaging Fabry–Perot interferometer (FIFI),” Int. J. Infrared Mill. Waves 12, 859–884 (1991).
[CrossRef]

Kawada, M.

H. Matsuhara, M. Kawada, T. Matsumoto, S. Matsuura, M. Tanaka, J. J. Bock, V. V. Hristov, A. E. Lange, P. D. Mauskopf, P. L. Richards, “A rocket-borne instrument for observations of near infrared and far-infrared extended astrophysical emission,” Publ. Astron. Soc. Jpn. 46, 665–676 (1994).

J. J. Bock, V. V. Hristov, M. Kawada, H. Matsuhara, T. Matsumoto, S. Matsuura, P. D. Mauskopf, P. L. Richards, M. Tanaka, A. E. Lange, “Observation of [C ii] 158-μm emission from the diffuse interstellar medium,” Astrophys. J. Lett. 410, L115–L118 (1993).
[CrossRef]

Kobayashi, Y.

T. Nakagawa, H. Okuda, H. Shibai, H. Matsuhara, Y. Kobayashi, N. Hiromoto, “Liquid helium cooled Fabry–Perot spectrometer and the frequency switching method for far-infrared spectroscopic observations,” in Instrumentation in Astronomy VII, D. L. Crawford, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1235, 97–107 (1990).

Lange, A. E.

H. Matsuhara, M. Kawada, T. Matsumoto, S. Matsuura, M. Tanaka, J. J. Bock, V. V. Hristov, A. E. Lange, P. D. Mauskopf, P. L. Richards, “A rocket-borne instrument for observations of near infrared and far-infrared extended astrophysical emission,” Publ. Astron. Soc. Jpn. 46, 665–676 (1994).

J. J. Bock, V. V. Hristov, M. Kawada, H. Matsuhara, T. Matsumoto, S. Matsuura, P. D. Mauskopf, P. L. Richards, M. Tanaka, A. E. Lange, “Observation of [C ii] 158-μm emission from the diffuse interstellar medium,” Astrophys. J. Lett. 410, L115–L118 (1993).
[CrossRef]

D. D. Nolte, A. E. Lange, P. L. Richards, “Far-infrared dichroic bandpass filters,” Appl. Opt. 24, 1541–1545 (1985).
[CrossRef] [PubMed]

Lecullier, J. C.

J. C. Lecullier, G. Chanin, “A scanning Fabry–Perot interferometer for the 50–1000 μm range,” Infrared Phys. 16, 273–278 (1976).
[CrossRef]

Loewenstein, E. V.

Matsuhara, H.

H. Matsuhara, M. Kawada, T. Matsumoto, S. Matsuura, M. Tanaka, J. J. Bock, V. V. Hristov, A. E. Lange, P. D. Mauskopf, P. L. Richards, “A rocket-borne instrument for observations of near infrared and far-infrared extended astrophysical emission,” Publ. Astron. Soc. Jpn. 46, 665–676 (1994).

H. Shibai, M. Yui, H. Matsuhara, N. Hiromoto, T. Nakagawa, H. Okuda, “Far-infrared line mapper (FILM) on the IRTS,” Astrophys. J. 428, 377–383 (1994).
[CrossRef]

J. J. Bock, V. V. Hristov, M. Kawada, H. Matsuhara, T. Matsumoto, S. Matsuura, P. D. Mauskopf, P. L. Richards, M. Tanaka, A. E. Lange, “Observation of [C ii] 158-μm emission from the diffuse interstellar medium,” Astrophys. J. Lett. 410, L115–L118 (1993).
[CrossRef]

T. Nakagawa, H. Okuda, H. Shibai, H. Matsuhara, Y. Kobayashi, N. Hiromoto, “Liquid helium cooled Fabry–Perot spectrometer and the frequency switching method for far-infrared spectroscopic observations,” in Instrumentation in Astronomy VII, D. L. Crawford, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1235, 97–107 (1990).

Matsumoto, T.

H. Matsuhara, M. Kawada, T. Matsumoto, S. Matsuura, M. Tanaka, J. J. Bock, V. V. Hristov, A. E. Lange, P. D. Mauskopf, P. L. Richards, “A rocket-borne instrument for observations of near infrared and far-infrared extended astrophysical emission,” Publ. Astron. Soc. Jpn. 46, 665–676 (1994).

J. J. Bock, V. V. Hristov, M. Kawada, H. Matsuhara, T. Matsumoto, S. Matsuura, P. D. Mauskopf, P. L. Richards, M. Tanaka, A. E. Lange, “Observation of [C ii] 158-μm emission from the diffuse interstellar medium,” Astrophys. J. Lett. 410, L115–L118 (1993).
[CrossRef]

Matsuura, S.

H. Matsuhara, M. Kawada, T. Matsumoto, S. Matsuura, M. Tanaka, J. J. Bock, V. V. Hristov, A. E. Lange, P. D. Mauskopf, P. L. Richards, “A rocket-borne instrument for observations of near infrared and far-infrared extended astrophysical emission,” Publ. Astron. Soc. Jpn. 46, 665–676 (1994).

J. J. Bock, V. V. Hristov, M. Kawada, H. Matsuhara, T. Matsumoto, S. Matsuura, P. D. Mauskopf, P. L. Richards, M. Tanaka, A. E. Lange, “Observation of [C ii] 158-μm emission from the diffuse interstellar medium,” Astrophys. J. Lett. 410, L115–L118 (1993).
[CrossRef]

Mauskopf, P. D.

H. Matsuhara, M. Kawada, T. Matsumoto, S. Matsuura, M. Tanaka, J. J. Bock, V. V. Hristov, A. E. Lange, P. D. Mauskopf, P. L. Richards, “A rocket-borne instrument for observations of near infrared and far-infrared extended astrophysical emission,” Publ. Astron. Soc. Jpn. 46, 665–676 (1994).

J. J. Bock, V. V. Hristov, M. Kawada, H. Matsuhara, T. Matsumoto, S. Matsuura, P. D. Mauskopf, P. L. Richards, M. Tanaka, A. E. Lange, “Observation of [C ii] 158-μm emission from the diffuse interstellar medium,” Astrophys. J. Lett. 410, L115–L118 (1993).
[CrossRef]

McPhedran, R. C.

Morgan, R. L.

Nakagawa, T.

H. Shibai, M. Yui, H. Matsuhara, N. Hiromoto, T. Nakagawa, H. Okuda, “Far-infrared line mapper (FILM) on the IRTS,” Astrophys. J. 428, 377–383 (1994).
[CrossRef]

T. Nakagawa, H. Okuda, H. Shibai, H. Matsuhara, Y. Kobayashi, N. Hiromoto, “Liquid helium cooled Fabry–Perot spectrometer and the frequency switching method for far-infrared spectroscopic observations,” in Instrumentation in Astronomy VII, D. L. Crawford, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1235, 97–107 (1990).

Nolte, D. D.

Okuda, H.

H. Shibai, M. Yui, H. Matsuhara, N. Hiromoto, T. Nakagawa, H. Okuda, “Far-infrared line mapper (FILM) on the IRTS,” Astrophys. J. 428, 377–383 (1994).
[CrossRef]

T. Nakagawa, H. Okuda, H. Shibai, H. Matsuhara, Y. Kobayashi, N. Hiromoto, “Liquid helium cooled Fabry–Perot spectrometer and the frequency switching method for far-infrared spectroscopic observations,” in Instrumentation in Astronomy VII, D. L. Crawford, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1235, 97–107 (1990).

Poglitsch, A.

A. Poglitsch, J. W. Beeman, N. Geis, R. Genzel, M. Haggerty, E. E. Haller, J. Jackson, M. Rumitz, G. J. Stacey, C. H. Townes, “The MPE/UCB far-infrared imaging Fabry–Perot interferometer (FIFI),” Int. J. Infrared Mill. Waves 12, 859–884 (1991).
[CrossRef]

Renk, K. F.

Richards, P. L.

H. Matsuhara, M. Kawada, T. Matsumoto, S. Matsuura, M. Tanaka, J. J. Bock, V. V. Hristov, A. E. Lange, P. D. Mauskopf, P. L. Richards, “A rocket-borne instrument for observations of near infrared and far-infrared extended astrophysical emission,” Publ. Astron. Soc. Jpn. 46, 665–676 (1994).

J. J. Bock, V. V. Hristov, M. Kawada, H. Matsuhara, T. Matsumoto, S. Matsuura, P. D. Mauskopf, P. L. Richards, M. Tanaka, A. E. Lange, “Observation of [C ii] 158-μm emission from the diffuse interstellar medium,” Astrophys. J. Lett. 410, L115–L118 (1993).
[CrossRef]

D. D. Nolte, A. E. Lange, P. L. Richards, “Far-infrared dichroic bandpass filters,” Appl. Opt. 24, 1541–1545 (1985).
[CrossRef] [PubMed]

Rumitz, M.

A. Poglitsch, J. W. Beeman, N. Geis, R. Genzel, M. Haggerty, E. E. Haller, J. Jackson, M. Rumitz, G. J. Stacey, C. H. Townes, “The MPE/UCB far-infrared imaging Fabry–Perot interferometer (FIFI),” Int. J. Infrared Mill. Waves 12, 859–884 (1991).
[CrossRef]

Shibai, H.

H. Shibai, M. Yui, H. Matsuhara, N. Hiromoto, T. Nakagawa, H. Okuda, “Far-infrared line mapper (FILM) on the IRTS,” Astrophys. J. 428, 377–383 (1994).
[CrossRef]

T. Nakagawa, H. Okuda, H. Shibai, H. Matsuhara, Y. Kobayashi, N. Hiromoto, “Liquid helium cooled Fabry–Perot spectrometer and the frequency switching method for far-infrared spectroscopic observations,” in Instrumentation in Astronomy VII, D. L. Crawford, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1235, 97–107 (1990).

Smith, D. R.

Stacey, G. J.

A. Poglitsch, J. W. Beeman, N. Geis, R. Genzel, M. Haggerty, E. E. Haller, J. Jackson, M. Rumitz, G. J. Stacey, C. H. Townes, “The MPE/UCB far-infrared imaging Fabry–Perot interferometer (FIFI),” Int. J. Infrared Mill. Waves 12, 859–884 (1991).
[CrossRef]

Tanaka, M.

H. Matsuhara, M. Kawada, T. Matsumoto, S. Matsuura, M. Tanaka, J. J. Bock, V. V. Hristov, A. E. Lange, P. D. Mauskopf, P. L. Richards, “A rocket-borne instrument for observations of near infrared and far-infrared extended astrophysical emission,” Publ. Astron. Soc. Jpn. 46, 665–676 (1994).

J. J. Bock, V. V. Hristov, M. Kawada, H. Matsuhara, T. Matsumoto, S. Matsuura, P. D. Mauskopf, P. L. Richards, M. Tanaka, A. E. Lange, “Observation of [C ii] 158-μm emission from the diffuse interstellar medium,” Astrophys. J. Lett. 410, L115–L118 (1993).
[CrossRef]

Townes, C. H.

A. Poglitsch, J. W. Beeman, N. Geis, R. Genzel, M. Haggerty, E. E. Haller, J. Jackson, M. Rumitz, G. J. Stacey, C. H. Townes, “The MPE/UCB far-infrared imaging Fabry–Perot interferometer (FIFI),” Int. J. Infrared Mill. Waves 12, 859–884 (1991).
[CrossRef]

Ulrich, R.

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37–55 (1967).
[CrossRef]

Whitbourn, L. B.

White, G. K.

G. K. White, Experimental Techniques in Low-Temperature Physics (Clarendon, Oxford, 1979), p. 318.

Yui, M.

H. Shibai, M. Yui, H. Matsuhara, N. Hiromoto, T. Nakagawa, H. Okuda, “Far-infrared line mapper (FILM) on the IRTS,” Astrophys. J. 428, 377–383 (1994).
[CrossRef]

Appl. Opt.

Astrophys. J.

H. Shibai, M. Yui, H. Matsuhara, N. Hiromoto, T. Nakagawa, H. Okuda, “Far-infrared line mapper (FILM) on the IRTS,” Astrophys. J. 428, 377–383 (1994).
[CrossRef]

Astrophys. J. Lett.

J. J. Bock, V. V. Hristov, M. Kawada, H. Matsuhara, T. Matsumoto, S. Matsuura, P. D. Mauskopf, P. L. Richards, M. Tanaka, A. E. Lange, “Observation of [C ii] 158-μm emission from the diffuse interstellar medium,” Astrophys. J. Lett. 410, L115–L118 (1993).
[CrossRef]

Infrared Phys.

J. C. Lecullier, G. Chanin, “A scanning Fabry–Perot interferometer for the 50–1000 μm range,” Infrared Phys. 16, 273–278 (1976).
[CrossRef]

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37–55 (1967).
[CrossRef]

Int. J. Infrared Mill. Waves

A. Poglitsch, J. W. Beeman, N. Geis, R. Genzel, M. Haggerty, E. E. Haller, J. Jackson, M. Rumitz, G. J. Stacey, C. H. Townes, “The MPE/UCB far-infrared imaging Fabry–Perot interferometer (FIFI),” Int. J. Infrared Mill. Waves 12, 859–884 (1991).
[CrossRef]

Publ. Astron. Soc. Jpn.

H. Matsuhara, M. Kawada, T. Matsumoto, S. Matsuura, M. Tanaka, J. J. Bock, V. V. Hristov, A. E. Lange, P. D. Mauskopf, P. L. Richards, “A rocket-borne instrument for observations of near infrared and far-infrared extended astrophysical emission,” Publ. Astron. Soc. Jpn. 46, 665–676 (1994).

Other

T. Nakagawa, H. Okuda, H. Shibai, H. Matsuhara, Y. Kobayashi, N. Hiromoto, “Liquid helium cooled Fabry–Perot spectrometer and the frequency switching method for far-infrared spectroscopic observations,” in Instrumentation in Astronomy VII, D. L. Crawford, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1235, 97–107 (1990).

P. E. Clegg, “ISO long-wavelength spectrometer,” in Infrared Spaceborne Remote Sensing, M. S. Scholl, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2019, 15–27 (1993).

Virginia Semiconductor, Fredricksburg, Va. 22401.

G. K. White, Experimental Techniques in Low-Temperature Physics (Clarendon, Oxford, 1979), p. 318.

Bomem DA3, Bomem Inc., Quebec G2E 5S5, Canada.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Fabry–Perot filter, consisting of reflective metal-mesh faces patterned on each side of a silicon étalon is tipped at an angle θtip with respect to the incident beam. The beam has the conical distribution described in the text, as indicated by the dotted curves. A single ray from the beam, shown by the arrow, with an incident angle of Ψ is bent toward the normal to an interior angle Ψ′ according to Snell's law.

Fig. 2
Fig. 2

Resolving power limited by beam divergence, ℛBD, for vacuum-gap (solid curves) and silicon-gap (dashed curves) Fabry–Perot filters. Each family of curves gives ℛBD for incident beams tipped at θtip = 0°, 5°, 10°, 15°, 20°, and 25° with respect to the normal of the étalon.

Fig. 3
Fig. 3

Geometry of (a) the ICM and (b) the CSM patterns.

Fig. 4
Fig. 4

Measured face reflectivity R, shown by solid curves, for the ICM and the CSM. The dashed curves indicate the calculated face reflectivity as described in the text.

Fig. 5
Fig. 5

Resolving power ℛ for a silicon-gap Fabry–Perot filter with faces patterned with metal mesh consisting of (a) CSM and (b) ICM. The measured resolving power is shown at θtip = 0° by circles and at θtip = 15° by squares. The solid curves give the theoretical resolving power calculated from the face reflectivity shown in Fig. 4 for a perfectly collimated beam. The dashed curves give the resolving power including the effects of broadening caused by nonparallelism and beam divergence for θtip = 0°. The dotted curves are for θtip = 15°.

Fig. 6
Fig. 6

Peak transmittance for a silicon-gap Fabry–Perot filter with faces patterned with metal mesh consisting of (a) CSM and (b) ICM. The measured peak transmittance at θtip = 0° is shown by circles, at θtip = 15° by squares. The curves give the theoretical peak transmittance for a Fabry–Perot filter with an intrinsic resolving power determined from the face reflectivity, shown in Fig. 4, broadened by nonparallelism and beam divergence. The dashed and dotted curves are calculated for θtip = 0° and θtip = 15°, respectively. The calculated transmittance includes a loss per pass of A = 0%, 1%, and A = 0%, 2%.

Fig. 7
Fig. 7

Spectral response of the rocketborne photometer designed to measure diffuse [C ii] 157.74-μm line emission. The silicon étalon, tipped at 15° with respect to the incident beam, serves as a dichroic beam splitter by transmitting radiation at the wavelength of the [C ii] line to the line channel (LC) and reflecting radiation at wavelengths near the line to the continuum channel (CC). An additional silicon-gap Fabry–Perot filter operated at normal incidence defines the response of the CC. Adjacent orders are blocked by vacuum-gap Fabry–Perot filters operating in first order at normal incidence. The peak response of the LC was accurately tuned to the frequency of the [C ii] line as described in the text.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

2 π nt λ cos Ψ + Φ = m π , m = 0 , 1 , 2 , 3 ,
sin Ψ = sin Ψ n .
λ = λ 0 cos Ψ .
d I ( θ , ϕ ; f ) d θ d ϕ = { ( 4 f 2 + 1 π ) cos θ sin θ , θ < arctan ( 1 2 f ) 0 , θ > arctan ( 1 2 f ) ,
d I ( λ ; f , θ tip ) d λ = 0 π 0 2 π d I ( θ , ϕ ; f ) d θ d ϕ × T ( λ cos Ψ ( θ , ϕ ; θ tip ) ) d θ d ϕ ,
BD λ peak d I ( λ peak ; f , θ tip ) d λ / d I ( λ ; f , θ tip ) d λ d λ .
T = ( 1 A 1 R ) 2 × { 1 1 + [ 4 R / ( 1 R ) 2 ] sin 2 [ ( 2 π nt / λ ) cos Ψ + Φ ] } ,
= λ Δ λ FWHM = m = m π 2 arcsin [ ( 1 R ) / ( 2 R ) ] m π R 1 R .
R = 1 + ( n 1 ) 2 ( X / Z s ) 2 1 + ( n + 1 ) 2 ( X / Z s ) 2 ,
X c Z s = 2 1 + n 2 ( 4 ω 0 ln csc π a g ) 1 ( ω ω 0 ω 0 ω ) ,
X I Z s = ( ω 0 { ( b / g ) ln ( g / π a ) 2 [ 1 ( 2 b / g ) ( 2 a / g ) ] ln ( g / π b ) } 1 / 2 ) × ( ω ω 0 ω 0 ω ) 1 .
R 0 Z s = η 4 ( 4 π ɛ 0 c λ σ ) 1 / 2 ,
η = J 2 ( x ) ( d S / S tot ) [ J ( x ) ( d S / S tot ) ] 2 ,
A = 4 n R 0 / Z s [ 1 + ( n + 1 ) R 0 / Z s ] 2 + ( n + 1 ) 2 ( X / Z s ) 2 4 n R 0 / Z s ,
T = ( 1 R ) ( 1 R n ) 1 + R R n 2 R R n cos [ ( 4 π nt / λ ) + Φ ] ,

Metrics