Abstract

The potency and versatility of a numerical procedure based on the generalized multipole technique (GMT) are demonstrated in the context of full-vector electromagnetic interactions for general incidence on arbitrarily shaped, geometrically composite, highly elongated, axisymmetric perfectly conducting or dielectric objects of large size parameters and arbitrary constitutive parameters. Representative computations that verify the accuracy of the technique are given for a large category of problems that have not been considered previously by the use of the GMT, to our knowledge. These problems involve spheroids of axial ratios as high as 20 and with the largest dimension of the dielectric object along the symmetry axis equal to 75 wavelengths; sphere–cone–sphere geometries; peanut-shaped scatterers; and finite-length cylinders with hemispherical, spherical, and flat end caps. Whenever possible, the extended boundary-condition method has been used in the process of examining the applicability of the suggested solution, with excellent agreement being achieved in all cases considered. It is believed that the numerical-scattering results presented here represent the largest detailed three-dimensional precise modeling ever verified as far as expansion functions that fulfill Maxwell’s equations throughout the relevant domain of interest are concerned.

© 1995 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Scattering of on-axis Gaussian beam by a uniaxial anisotropic object

Zhenzhen Chen, Huayong Zhang, Zhixiang Huang, and Xianliang Wu
J. Opt. Soc. Am. A 31(11) 2545-2550 (2014)

Scattering Mueller matrix of an ensemble of variously shaped small particles

Yu-lin Xu
J. Opt. Soc. Am. A 20(11) 2093-2105 (2003)

Electromagnetic scattering by an aggregate of spheres

Yu-lin Xu
Appl. Opt. 34(21) 4573-4588 (1995)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (23)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription