Abstract

A krypton fluoride (KrF) excimer-pumped, nitrogen Raman shifter has been studied for use in a wavelength-optimized solar-blind Raman lidar. First Stokes conversion efficiencies (248 → 263 nm) as high as 12% have been observed in N2:He gas mixtures. Both oscillator–amplifier and self-seeded configurations were investigated. Wavelength-dependent effects were investigated with a Nd:YAG laser operating at 532 and 266 nm. A comparison of KrF- and Nd:YAG-pumped Raman shifting has shown that the beam quality of the excimer laser was a major factor in limiting the maximum first Stokes conversion efficiency.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. B. Grant, E. V. Browell, N. S. Higdon, S. Ismail, “Raman shifting of KrF laser radiation for tropospheric ozone measurements,” Appl. Opt. 30, 2628–2633 (1991).
    [CrossRef] [PubMed]
  2. I. S. McDermid, S. M. Godin, “Stratospheric ozone measurements using a ground based, high-power lidar,” in Laser Applications in Meteorology and Earth and Remote Sensing, M. M. Sokoloski, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1062, 225–232 (1989).
  3. D. A. Haner, I. S. McDermid, “Stimulated Raman shifting of the Nd:YAG fourth harmonic (266 nm) in H2 HD, and D2,” IEEE J. Quantum Electrom. 26, 1292–1298 (1990).
    [CrossRef]
  4. S. H. Melfi, D. Whiteman, R. Ferrare, “Observation of atmospheric fronts using Raman lidar moisture measurements,” J. Appl. Meteorol. 28, 789–806 (1989).
    [CrossRef]
  5. J. E. M. Goldsmith, S. E. Bisson, R. A. Ferrare, K. D. Evans, D. N. Whiteman, S. H. Melfi, “Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems,” Bull. Am. Meteorol. Soc. 75, 975–982 (1994).
    [CrossRef]
  6. D. Renaut, R. Capitini, “Boundary-layer water vapor probing with a solar blind Raman lidar: validations, meteorological observations and prospects,” J. Atmos. Oceanic Technol. 5, 585–601 (1988).
    [CrossRef]
  7. J. E. M. Goldsmith, R. A. Ferrare, “Performance modeling of daytime Raman lidar systems for profiling atmospheric water vapor,” in Sixteenth International Laser Radar Conference, NASA Conf. Publ. 3158 (NASA, Washington, D.C., 1992), part 2, 667–670.
  8. B. Zhang, W. R. Lempert, R. B. Miles, G. Diskin, “Efficient vibrational Raman conversion in O2 and N2 cells by use of superfluorescence seeding,” Opt. Lett. 18, 1132–1134 (1993).
    [CrossRef] [PubMed]
  9. Z. Chu, U. N. Singh, T. D. Wilkerson, “A self seeded SRS System for the generation of 1.54 μm eye safe radiation,” Opt. Commun. 75, 173–178 (1990).
    [CrossRef]
  10. J. H. Newton, G. M. Schindler, “Numerical model of Raman-shifting excimer lasers to the blue-green in H2,” Opt. Lett. 6, 125–127 (1981).
    [CrossRef] [PubMed]
  11. J. N. Holliday, “Design of a XeF-pumped second Stokes amplifier for blue-green production in H2,” Opt. Lett. 8, 12–14 (1983).
    [CrossRef] [PubMed]
  12. A. Weber, Raman Spectroscopy of Gases and Liquids (Springer-Verlag, Berlin, 1979), p. 130.
  13. D. P. Shelton, V. Mizrahi, “Refractive-index dispersion of gases measured by optical harmonic phase matching,” Phys. Rev. A 33, 72–76 (1986).
    [CrossRef] [PubMed]
  14. K. Sentrayan, L. Major, A. Michael, V. Kushawaha, “Observation of intense Stokes and anti-Stokes lines in CH4 pumped by 355 nm of a Nd:YAG laser,” Appl. Phys. B 55, 311–318 (1992).
    [CrossRef]
  15. A. D. May, J. C. Stryland, G. Varghese, “Collisional narrowing of the vibrational Raman band of nitrogen and carbon monoxide,” Can. J. Phys. 48, 2331–2335 (1970).
    [CrossRef]
  16. I. V. Tomov, R. Fedosejevs, D. C. D. McKen, C. Domiere, A. A. Offenberger, “Phase conjugation and pulse compression of KrF-laser radiation by stimulated Raman scattering,” Opt. Lett. 8, 9–11 (1983).
    [CrossRef] [PubMed]
  17. A. Luches, V. Nassisi, M. R. Perrone, “Stimulated Raman scattering in H2–Ar mixtures,” Opt. Lett. 12, 33–35 (1987).
    [CrossRef] [PubMed]
  18. Q. Lou, “Research on the characteristics of H2 Raman conversion pumping by a 1-J XeCl excimer laser,” J. Appl. Phys. 66, 2265–2273 (1989).
    [CrossRef]
  19. W. R. Lempert, B. Zhang, R. B. Miles, G. Diskin, “Simplifications of the relief flow tagging system for laboratory use,” Publ. AIAA-91-0356 (American Institute of Aeronautics and Astronautics, Washington, D.C., 1991).
  20. W. R. Lempert, B. Zhang, R. B. Miles, J. P. Looney, “Stimulated Raman scattering and coherent anti-Stokes Raman spectroscopy in high-pressure oxygen,” J. Opt. Soc. Am. B 7, 715–721 (1990).
    [CrossRef]
  21. J. R. Murry, J. Goldhar, D. Eimerl, A. Szoke, Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. QE-15, 342–368 (1979).
    [CrossRef]
  22. J. E. M. Goldsmith, S. E. Bisson, M. Lapp, S. H. Melfi, D. Whiteman, R. Ferrare, K. Evans, “Raman lidar measurement of atmospheric water vapor: development of a daytime-optimized system for the atmospheric radiation measurement program,” in Fourth Symposium on Global Change Studies, (American Meteorological Society, Boston, Mass., 1993), pp. 50–52.
  23. J. E. M. Goldsmith, S. E. Bisson, “Daytime Raman lidar profiling of atmospheric water vapor,” in Seventeenth International Laser Radar Conference (Laser Radar Society of Japan, 1994), pp. 156–158.

1994 (1)

J. E. M. Goldsmith, S. E. Bisson, R. A. Ferrare, K. D. Evans, D. N. Whiteman, S. H. Melfi, “Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems,” Bull. Am. Meteorol. Soc. 75, 975–982 (1994).
[CrossRef]

1993 (1)

1992 (1)

K. Sentrayan, L. Major, A. Michael, V. Kushawaha, “Observation of intense Stokes and anti-Stokes lines in CH4 pumped by 355 nm of a Nd:YAG laser,” Appl. Phys. B 55, 311–318 (1992).
[CrossRef]

1991 (1)

1990 (3)

D. A. Haner, I. S. McDermid, “Stimulated Raman shifting of the Nd:YAG fourth harmonic (266 nm) in H2 HD, and D2,” IEEE J. Quantum Electrom. 26, 1292–1298 (1990).
[CrossRef]

Z. Chu, U. N. Singh, T. D. Wilkerson, “A self seeded SRS System for the generation of 1.54 μm eye safe radiation,” Opt. Commun. 75, 173–178 (1990).
[CrossRef]

W. R. Lempert, B. Zhang, R. B. Miles, J. P. Looney, “Stimulated Raman scattering and coherent anti-Stokes Raman spectroscopy in high-pressure oxygen,” J. Opt. Soc. Am. B 7, 715–721 (1990).
[CrossRef]

1989 (2)

Q. Lou, “Research on the characteristics of H2 Raman conversion pumping by a 1-J XeCl excimer laser,” J. Appl. Phys. 66, 2265–2273 (1989).
[CrossRef]

S. H. Melfi, D. Whiteman, R. Ferrare, “Observation of atmospheric fronts using Raman lidar moisture measurements,” J. Appl. Meteorol. 28, 789–806 (1989).
[CrossRef]

1988 (1)

D. Renaut, R. Capitini, “Boundary-layer water vapor probing with a solar blind Raman lidar: validations, meteorological observations and prospects,” J. Atmos. Oceanic Technol. 5, 585–601 (1988).
[CrossRef]

1987 (1)

1986 (1)

D. P. Shelton, V. Mizrahi, “Refractive-index dispersion of gases measured by optical harmonic phase matching,” Phys. Rev. A 33, 72–76 (1986).
[CrossRef] [PubMed]

1983 (2)

1981 (1)

1979 (1)

J. R. Murry, J. Goldhar, D. Eimerl, A. Szoke, Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. QE-15, 342–368 (1979).
[CrossRef]

1970 (1)

A. D. May, J. C. Stryland, G. Varghese, “Collisional narrowing of the vibrational Raman band of nitrogen and carbon monoxide,” Can. J. Phys. 48, 2331–2335 (1970).
[CrossRef]

Bisson, S. E.

J. E. M. Goldsmith, S. E. Bisson, R. A. Ferrare, K. D. Evans, D. N. Whiteman, S. H. Melfi, “Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems,” Bull. Am. Meteorol. Soc. 75, 975–982 (1994).
[CrossRef]

J. E. M. Goldsmith, S. E. Bisson, M. Lapp, S. H. Melfi, D. Whiteman, R. Ferrare, K. Evans, “Raman lidar measurement of atmospheric water vapor: development of a daytime-optimized system for the atmospheric radiation measurement program,” in Fourth Symposium on Global Change Studies, (American Meteorological Society, Boston, Mass., 1993), pp. 50–52.

J. E. M. Goldsmith, S. E. Bisson, “Daytime Raman lidar profiling of atmospheric water vapor,” in Seventeenth International Laser Radar Conference (Laser Radar Society of Japan, 1994), pp. 156–158.

Browell, E. V.

Capitini, R.

D. Renaut, R. Capitini, “Boundary-layer water vapor probing with a solar blind Raman lidar: validations, meteorological observations and prospects,” J. Atmos. Oceanic Technol. 5, 585–601 (1988).
[CrossRef]

Chu, Z.

Z. Chu, U. N. Singh, T. D. Wilkerson, “A self seeded SRS System for the generation of 1.54 μm eye safe radiation,” Opt. Commun. 75, 173–178 (1990).
[CrossRef]

Diskin, G.

B. Zhang, W. R. Lempert, R. B. Miles, G. Diskin, “Efficient vibrational Raman conversion in O2 and N2 cells by use of superfluorescence seeding,” Opt. Lett. 18, 1132–1134 (1993).
[CrossRef] [PubMed]

W. R. Lempert, B. Zhang, R. B. Miles, G. Diskin, “Simplifications of the relief flow tagging system for laboratory use,” Publ. AIAA-91-0356 (American Institute of Aeronautics and Astronautics, Washington, D.C., 1991).

Domiere, C.

Eimerl, D.

J. R. Murry, J. Goldhar, D. Eimerl, A. Szoke, Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. QE-15, 342–368 (1979).
[CrossRef]

Evans, K.

J. E. M. Goldsmith, S. E. Bisson, M. Lapp, S. H. Melfi, D. Whiteman, R. Ferrare, K. Evans, “Raman lidar measurement of atmospheric water vapor: development of a daytime-optimized system for the atmospheric radiation measurement program,” in Fourth Symposium on Global Change Studies, (American Meteorological Society, Boston, Mass., 1993), pp. 50–52.

Evans, K. D.

J. E. M. Goldsmith, S. E. Bisson, R. A. Ferrare, K. D. Evans, D. N. Whiteman, S. H. Melfi, “Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems,” Bull. Am. Meteorol. Soc. 75, 975–982 (1994).
[CrossRef]

Fedosejevs, R.

Ferrare, R.

S. H. Melfi, D. Whiteman, R. Ferrare, “Observation of atmospheric fronts using Raman lidar moisture measurements,” J. Appl. Meteorol. 28, 789–806 (1989).
[CrossRef]

J. E. M. Goldsmith, S. E. Bisson, M. Lapp, S. H. Melfi, D. Whiteman, R. Ferrare, K. Evans, “Raman lidar measurement of atmospheric water vapor: development of a daytime-optimized system for the atmospheric radiation measurement program,” in Fourth Symposium on Global Change Studies, (American Meteorological Society, Boston, Mass., 1993), pp. 50–52.

Ferrare, R. A.

J. E. M. Goldsmith, S. E. Bisson, R. A. Ferrare, K. D. Evans, D. N. Whiteman, S. H. Melfi, “Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems,” Bull. Am. Meteorol. Soc. 75, 975–982 (1994).
[CrossRef]

J. E. M. Goldsmith, R. A. Ferrare, “Performance modeling of daytime Raman lidar systems for profiling atmospheric water vapor,” in Sixteenth International Laser Radar Conference, NASA Conf. Publ. 3158 (NASA, Washington, D.C., 1992), part 2, 667–670.

Godin, S. M.

I. S. McDermid, S. M. Godin, “Stratospheric ozone measurements using a ground based, high-power lidar,” in Laser Applications in Meteorology and Earth and Remote Sensing, M. M. Sokoloski, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1062, 225–232 (1989).

Goldhar, J.

J. R. Murry, J. Goldhar, D. Eimerl, A. Szoke, Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. QE-15, 342–368 (1979).
[CrossRef]

Goldsmith, J. E. M.

J. E. M. Goldsmith, S. E. Bisson, R. A. Ferrare, K. D. Evans, D. N. Whiteman, S. H. Melfi, “Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems,” Bull. Am. Meteorol. Soc. 75, 975–982 (1994).
[CrossRef]

J. E. M. Goldsmith, R. A. Ferrare, “Performance modeling of daytime Raman lidar systems for profiling atmospheric water vapor,” in Sixteenth International Laser Radar Conference, NASA Conf. Publ. 3158 (NASA, Washington, D.C., 1992), part 2, 667–670.

J. E. M. Goldsmith, S. E. Bisson, M. Lapp, S. H. Melfi, D. Whiteman, R. Ferrare, K. Evans, “Raman lidar measurement of atmospheric water vapor: development of a daytime-optimized system for the atmospheric radiation measurement program,” in Fourth Symposium on Global Change Studies, (American Meteorological Society, Boston, Mass., 1993), pp. 50–52.

J. E. M. Goldsmith, S. E. Bisson, “Daytime Raman lidar profiling of atmospheric water vapor,” in Seventeenth International Laser Radar Conference (Laser Radar Society of Japan, 1994), pp. 156–158.

Grant, W. B.

Haner, D. A.

D. A. Haner, I. S. McDermid, “Stimulated Raman shifting of the Nd:YAG fourth harmonic (266 nm) in H2 HD, and D2,” IEEE J. Quantum Electrom. 26, 1292–1298 (1990).
[CrossRef]

Higdon, N. S.

Holliday, J. N.

Ismail, S.

Kushawaha, V.

K. Sentrayan, L. Major, A. Michael, V. Kushawaha, “Observation of intense Stokes and anti-Stokes lines in CH4 pumped by 355 nm of a Nd:YAG laser,” Appl. Phys. B 55, 311–318 (1992).
[CrossRef]

Lapp, M.

J. E. M. Goldsmith, S. E. Bisson, M. Lapp, S. H. Melfi, D. Whiteman, R. Ferrare, K. Evans, “Raman lidar measurement of atmospheric water vapor: development of a daytime-optimized system for the atmospheric radiation measurement program,” in Fourth Symposium on Global Change Studies, (American Meteorological Society, Boston, Mass., 1993), pp. 50–52.

Lempert, W. R.

Looney, J. P.

Lou, Q.

Q. Lou, “Research on the characteristics of H2 Raman conversion pumping by a 1-J XeCl excimer laser,” J. Appl. Phys. 66, 2265–2273 (1989).
[CrossRef]

Luches, A.

Major, L.

K. Sentrayan, L. Major, A. Michael, V. Kushawaha, “Observation of intense Stokes and anti-Stokes lines in CH4 pumped by 355 nm of a Nd:YAG laser,” Appl. Phys. B 55, 311–318 (1992).
[CrossRef]

May, A. D.

A. D. May, J. C. Stryland, G. Varghese, “Collisional narrowing of the vibrational Raman band of nitrogen and carbon monoxide,” Can. J. Phys. 48, 2331–2335 (1970).
[CrossRef]

McDermid, I. S.

D. A. Haner, I. S. McDermid, “Stimulated Raman shifting of the Nd:YAG fourth harmonic (266 nm) in H2 HD, and D2,” IEEE J. Quantum Electrom. 26, 1292–1298 (1990).
[CrossRef]

I. S. McDermid, S. M. Godin, “Stratospheric ozone measurements using a ground based, high-power lidar,” in Laser Applications in Meteorology and Earth and Remote Sensing, M. M. Sokoloski, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1062, 225–232 (1989).

McKen, D. C. D.

Melfi, S. H.

J. E. M. Goldsmith, S. E. Bisson, R. A. Ferrare, K. D. Evans, D. N. Whiteman, S. H. Melfi, “Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems,” Bull. Am. Meteorol. Soc. 75, 975–982 (1994).
[CrossRef]

S. H. Melfi, D. Whiteman, R. Ferrare, “Observation of atmospheric fronts using Raman lidar moisture measurements,” J. Appl. Meteorol. 28, 789–806 (1989).
[CrossRef]

J. E. M. Goldsmith, S. E. Bisson, M. Lapp, S. H. Melfi, D. Whiteman, R. Ferrare, K. Evans, “Raman lidar measurement of atmospheric water vapor: development of a daytime-optimized system for the atmospheric radiation measurement program,” in Fourth Symposium on Global Change Studies, (American Meteorological Society, Boston, Mass., 1993), pp. 50–52.

Michael, A.

K. Sentrayan, L. Major, A. Michael, V. Kushawaha, “Observation of intense Stokes and anti-Stokes lines in CH4 pumped by 355 nm of a Nd:YAG laser,” Appl. Phys. B 55, 311–318 (1992).
[CrossRef]

Miles, R. B.

Mizrahi, V.

D. P. Shelton, V. Mizrahi, “Refractive-index dispersion of gases measured by optical harmonic phase matching,” Phys. Rev. A 33, 72–76 (1986).
[CrossRef] [PubMed]

Murry, J. R.

J. R. Murry, J. Goldhar, D. Eimerl, A. Szoke, Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. QE-15, 342–368 (1979).
[CrossRef]

Nassisi, V.

Newton, J. H.

Offenberger, A. A.

Perrone, M. R.

Renaut, D.

D. Renaut, R. Capitini, “Boundary-layer water vapor probing with a solar blind Raman lidar: validations, meteorological observations and prospects,” J. Atmos. Oceanic Technol. 5, 585–601 (1988).
[CrossRef]

Schindler, G. M.

Sentrayan, K.

K. Sentrayan, L. Major, A. Michael, V. Kushawaha, “Observation of intense Stokes and anti-Stokes lines in CH4 pumped by 355 nm of a Nd:YAG laser,” Appl. Phys. B 55, 311–318 (1992).
[CrossRef]

Shelton, D. P.

D. P. Shelton, V. Mizrahi, “Refractive-index dispersion of gases measured by optical harmonic phase matching,” Phys. Rev. A 33, 72–76 (1986).
[CrossRef] [PubMed]

Singh, U. N.

Z. Chu, U. N. Singh, T. D. Wilkerson, “A self seeded SRS System for the generation of 1.54 μm eye safe radiation,” Opt. Commun. 75, 173–178 (1990).
[CrossRef]

Stryland, J. C.

A. D. May, J. C. Stryland, G. Varghese, “Collisional narrowing of the vibrational Raman band of nitrogen and carbon monoxide,” Can. J. Phys. 48, 2331–2335 (1970).
[CrossRef]

Szoke, A.

J. R. Murry, J. Goldhar, D. Eimerl, A. Szoke, Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. QE-15, 342–368 (1979).
[CrossRef]

Tomov, I. V.

Varghese, G.

A. D. May, J. C. Stryland, G. Varghese, “Collisional narrowing of the vibrational Raman band of nitrogen and carbon monoxide,” Can. J. Phys. 48, 2331–2335 (1970).
[CrossRef]

Weber, A.

A. Weber, Raman Spectroscopy of Gases and Liquids (Springer-Verlag, Berlin, 1979), p. 130.

Whiteman, D.

S. H. Melfi, D. Whiteman, R. Ferrare, “Observation of atmospheric fronts using Raman lidar moisture measurements,” J. Appl. Meteorol. 28, 789–806 (1989).
[CrossRef]

J. E. M. Goldsmith, S. E. Bisson, M. Lapp, S. H. Melfi, D. Whiteman, R. Ferrare, K. Evans, “Raman lidar measurement of atmospheric water vapor: development of a daytime-optimized system for the atmospheric radiation measurement program,” in Fourth Symposium on Global Change Studies, (American Meteorological Society, Boston, Mass., 1993), pp. 50–52.

Whiteman, D. N.

J. E. M. Goldsmith, S. E. Bisson, R. A. Ferrare, K. D. Evans, D. N. Whiteman, S. H. Melfi, “Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems,” Bull. Am. Meteorol. Soc. 75, 975–982 (1994).
[CrossRef]

Wilkerson, T. D.

Z. Chu, U. N. Singh, T. D. Wilkerson, “A self seeded SRS System for the generation of 1.54 μm eye safe radiation,” Opt. Commun. 75, 173–178 (1990).
[CrossRef]

Zhang, B.

Appl. Opt. (1)

Appl. Phys. B (1)

K. Sentrayan, L. Major, A. Michael, V. Kushawaha, “Observation of intense Stokes and anti-Stokes lines in CH4 pumped by 355 nm of a Nd:YAG laser,” Appl. Phys. B 55, 311–318 (1992).
[CrossRef]

Bull. Am. Meteorol. Soc. (1)

J. E. M. Goldsmith, S. E. Bisson, R. A. Ferrare, K. D. Evans, D. N. Whiteman, S. H. Melfi, “Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems,” Bull. Am. Meteorol. Soc. 75, 975–982 (1994).
[CrossRef]

Can. J. Phys. (1)

A. D. May, J. C. Stryland, G. Varghese, “Collisional narrowing of the vibrational Raman band of nitrogen and carbon monoxide,” Can. J. Phys. 48, 2331–2335 (1970).
[CrossRef]

IEEE J. Quantum Electrom. (1)

D. A. Haner, I. S. McDermid, “Stimulated Raman shifting of the Nd:YAG fourth harmonic (266 nm) in H2 HD, and D2,” IEEE J. Quantum Electrom. 26, 1292–1298 (1990).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. R. Murry, J. Goldhar, D. Eimerl, A. Szoke, Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. QE-15, 342–368 (1979).
[CrossRef]

J. Appl. Meteorol. (1)

S. H. Melfi, D. Whiteman, R. Ferrare, “Observation of atmospheric fronts using Raman lidar moisture measurements,” J. Appl. Meteorol. 28, 789–806 (1989).
[CrossRef]

J. Appl. Phys. (1)

Q. Lou, “Research on the characteristics of H2 Raman conversion pumping by a 1-J XeCl excimer laser,” J. Appl. Phys. 66, 2265–2273 (1989).
[CrossRef]

J. Atmos. Oceanic Technol. (1)

D. Renaut, R. Capitini, “Boundary-layer water vapor probing with a solar blind Raman lidar: validations, meteorological observations and prospects,” J. Atmos. Oceanic Technol. 5, 585–601 (1988).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

Z. Chu, U. N. Singh, T. D. Wilkerson, “A self seeded SRS System for the generation of 1.54 μm eye safe radiation,” Opt. Commun. 75, 173–178 (1990).
[CrossRef]

Opt. Lett. (5)

Phys. Rev. A (1)

D. P. Shelton, V. Mizrahi, “Refractive-index dispersion of gases measured by optical harmonic phase matching,” Phys. Rev. A 33, 72–76 (1986).
[CrossRef] [PubMed]

Other (6)

J. E. M. Goldsmith, R. A. Ferrare, “Performance modeling of daytime Raman lidar systems for profiling atmospheric water vapor,” in Sixteenth International Laser Radar Conference, NASA Conf. Publ. 3158 (NASA, Washington, D.C., 1992), part 2, 667–670.

A. Weber, Raman Spectroscopy of Gases and Liquids (Springer-Verlag, Berlin, 1979), p. 130.

I. S. McDermid, S. M. Godin, “Stratospheric ozone measurements using a ground based, high-power lidar,” in Laser Applications in Meteorology and Earth and Remote Sensing, M. M. Sokoloski, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1062, 225–232 (1989).

W. R. Lempert, B. Zhang, R. B. Miles, G. Diskin, “Simplifications of the relief flow tagging system for laboratory use,” Publ. AIAA-91-0356 (American Institute of Aeronautics and Astronautics, Washington, D.C., 1991).

J. E. M. Goldsmith, S. E. Bisson, M. Lapp, S. H. Melfi, D. Whiteman, R. Ferrare, K. Evans, “Raman lidar measurement of atmospheric water vapor: development of a daytime-optimized system for the atmospheric radiation measurement program,” in Fourth Symposium on Global Change Studies, (American Meteorological Society, Boston, Mass., 1993), pp. 50–52.

J. E. M. Goldsmith, S. E. Bisson, “Daytime Raman lidar profiling of atmospheric water vapor,” in Seventeenth International Laser Radar Conference (Laser Radar Society of Japan, 1994), pp. 156–158.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental configuration used for Raman-shifting experiments at 266 and 248 nm. A quartz prism and an aperture were used to isolate the first Stokes component. For 532-nm pumping a colored glass filter and a 45° 532-nm mirror were used. The input pump energy was monitored by measurement of the backreflected pump light from the 2° cell window.

Fig. 2
Fig. 2

Comparison of the first Stokes efficiency as a function of pressure for 266-and 532-nm pumping at 70 mJ. Because the ratio of the pulse mismatch to Raman gain is greater at 532 nm than at 266 nm, second-order Stokes production was favored at 266 nm by four-wave mixing. Second-order Stokes was not observed for any value of pressure up to 600 psi and pump energy up to 240 mJ at 532 nm.

Fig. 3
Fig. 3

First Stokes energy efficiency as a function of pressure for a pump energy of 200 mJ at 532 nm. Second-order Stokes was not observed for any value of pressure up to 600 psi and pump energy up to 240 mJ.

Fig. 4
Fig. 4

Experimental configuration used for self-seeding experiments. The backward first Stokes was injected back into the cell by M2 to provide a seed for the forward Stokes. The spatial overlap of the backward Stokes with the pump beam was controlled by M2 and L2. M2 was also used to adjust the temporal overlap. M1 was a dichroic that was used to separate the pump and backreflected Stokes.

Fig. 5
Fig. 5

First Stokes energy efficiency as a function of pump energy for seeded and unseeded configurations. The efficiencies were nearly equivalent for pump energies up to 170 mJ. Above 170 mJ, the backward Stokes threshold was exceeded, and the conversion efficiency continued to increase linearly, whereas in the unseeded case the conversion increased at a slower rate.

Fig. 6
Fig. 6

Experimental configuration used for oscillator–amplifier experiments. The forward first Stokes from the 1-m cell was injected into the 2-m cell. Lenses with 2-m focal length were used for both the 1-and the 2-m cells.

Fig. 7
Fig. 7

First Stokes energy efficiency as a function of pressure at 180-mJ pump energy for varying N2:He mixtures.

Fig. 8
Fig. 8

First Stokes energy efficiency as a function of pump energy at 650-psi total pressure for varying N2:He mixtures.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

γ = 2 λ s 2 Δ N π c 2 h ν p Δ ν r d σ d Ω ,
d σ d Ω α ν s 4 ,
G α 1 λ s 2 λ p .

Metrics